Palm tocotrienol-rich-fraction yields higher numbers of normal embryos whereas alpha-tocopherol produces higher preimplantation survival in murine embryos


  • Mimi Sophia Sarbandi Universiti Teknologi MARA
  • Zolkapli Eshak Universiti Teknologi MARA
  • Nor Shahida Abd Rahman Universiti Teknologi MARA
  • Abu Thalhah Abdul Aziz Universiti Teknologi MARA
  • Mohd Hamim Rajikin Universiti Teknologi MARA
  • Nooraain Hashim Universiti Teknologi MARA
  • Zatul Akmar Ahmad Universiti Teknologi MARA
  • Nor Ashikin Mohamed Noor Khan Universiti Teknologi MARA



Embryo development, electron transmission microscopy, mitochondria, palm Tocotrienol-Rich-Fraction (TRF), alpha-Tocopherol


Vitamin E contains isomers of tocotrienols and tocopherols. Studies have shown that palm tocotrienol-rich-fraction (TRF) improves preimplantation development of murine embryos. The aim of this study is to investigate the effects of TRF and α-tocopherol supplementation on preimplantation embryonic morphology, development and mitochondrial ultrastructure. Female C57Bl/6 mice were supplemented with 60 mg/kg body weight per day TRF and α-tocopherol for seven days. The females were superovulated and mated with fertile males to obtain 2-cell stage embryos. Initial assessment of normal and abnormal morphology was carried out on 2-cell embryos. The embryos were then cultured until the blastocyst stage. At the 8-cell stage, embryos were subjected to Transmission Electron Microscopy (TEM) to observe their mitochondria. Results showed that palm TRF produced significantly higher numbers of normal 2-cell embryos compared with α-tocopherol (80.9% vs 31.4%) at p< 0.01. Alpha-tocopherol produced higher survival rate to the blastocyst stage compared with palm TRF (42.2% vs 20.6%) at p< 0.01. The TRF group showed more vacuolated mitochondria at 8-cell stage compared to the α-tocopherol group, which may have contributed to a decline in preimplantation survival rates.

Author Biographies

Mimi Sophia Sarbandi, Universiti Teknologi MARA

Maternofetal and Embryo Research Group (MatE), Faculty of Medicine

Zolkapli Eshak, Universiti Teknologi MARA

Maternofetal and Embryo Research Group (MatE), Faculty of Medicine

Nor Shahida Abd Rahman, Universiti Teknologi MARA

Maternofetal and Embryo Research Group (MatE), Faculty of Medicine

Abu Thalhah Abdul Aziz, Universiti Teknologi MARA

Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine

Mohd Hamim Rajikin, Universiti Teknologi MARA

Maternofetal and Embryo Research Group (MatE), Faculty of Medicine

Nooraain Hashim, Universiti Teknologi MARA

Faculty of Applied Sciences

Zatul Akmar Ahmad, Universiti Teknologi MARA

Faculty of Medicine

Nor Ashikin Mohamed Noor Khan, Universiti Teknologi MARA

Maternofetal and Embryo Research Group (MatE), Faculty of Medicine


Aggarwal, B. B., Sundaram, C., Prasad, S., and Kannappan, R. (2010). Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochemical Pharmacology, 80(11), 1613-1631.

Atkinson, J., Epand, R. F., and Epand, R. M. (2008). Tocopherols and tocotrienols in membranes: A critical review. Free Radical Biology and Medicine, 44(5), 739–764. 2007.11.010

Brigelius-Flohé, R., Kelly, F. J., Salonen, J. T., Neuzil, J., Zingg, J. M., and Azzi, A. (2002). The European perspective on vitamin E: Current knowledge and future research. The American Journal of Clinical Nutrition, 76(4), 703–716.

Catalgol, B., Batirel, S., and Ozer, N. K. (2011). Cellular protection and therapeutic potential of tocotrienols. Current Pharmaceutical Design, 17(21), 2215–2220.

Chakraborty, K., Ramsauer, V. P., Stone, W., and Krishnan, K. (2014). Chapter 24 – Tocotrienols in pancreatic cancer treatment and prevention. In

Preedy, V.R. (1st Ed.) Cancer: Oxidative Stress and Dietary Antioxidants (pp. 247–254). United Kingdom: Academic Press.

Cook-Mills, J. M., and McCary, C. (2010). Isoforms of vitamin E differentially regulate inflammation. Endocrine, Metabolic & Immune Disorders - Drug Targets, 10(4), 348–366.

Dumollard, R., Carroll, J., Duchen, M. R., Campbell, K., and Swann, K. (2009). Mitochondrial function and redox state in mammalian embryos. Seminars in Cell and Developmental Biology, 20(3), 346-353. 10.1016/j.semcdb.2008.12.013

Evans, H. M., and Bishop, K. S. (1922). On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science, 56(1458), 650-651.

Fujisawa, S., and Kadoma, Y. (2005). Kinetic study of the radical-scavenging activity of vitamin E and ubiquinone. In Vivo, 19(6), 1005–1011. pmid: 16277014

Guerin, P., El Mouatassim, S., and Ménézo, Y (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175–189.

Kamsani, Y. S., Rajikin, M. H., Mohamed Nor Khan, N.-A., Abdul Satar, N., and Chatterjee, A. (2013). Nicotine-induced cessation of embryonic development is reversed by γ-tocotrienol in mice. Medical Science Monitor Basic Research, 19, 87–92. MSMBR.883822

Le Bras, M., Clement, M. V, Pervaiz, S., and Brenner, C. (2005). Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histology and Histopathology, 20(1), 205–219. HH-20.205

Marchi, S., Patergnani, S., and Pinton, P. (2014). The endoplasmic reticulum-mitochondria connection: One touch, multiple functions. Biochemica et Biophysica Acta, 1837(4), 461-469. http:// 10.1016/j.bbabio.2013.10.015

Mokhtar N. M., Rajikin M. H., and Zakaria Z. (2008). Role of tocotrienol-rich palm vitamin E on pregnancy and preimplantation embryos in nicotine-treated rats. Biomedical Research, 19(3), 181-184.

Müller, L., Theile, K., and Böhm, V. (2010). In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Molecular Nutrition and Food Research, 54(5), 731–742.

Niki, E. (2014). Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radical Biology and Medicine, 66, 3–12.

Patel, A. Liebner, F. Netscher, T., Mereiter, K., and Rosenau, T. (2007). Vitamin E chemistry. Nitration of non-alpha-tocopherols: Products and mechanistic considerations. Journal of Organic Chemistry, 72 (17), 6504–6512.

Sathananthan, A. H., and Trounson, A. O. (2000). Mitochondrial morphology during preimplantational human embryogenesis. Human Reproduction, 15(Suppl. 2), 148–159. pmid:11041521

Schneider, C. (2005). Chemistry and biology of vitamin E. Molecular Nutrition & Food Research, 49(1), 7–30.

Sen, C. K., Khanna, S., and Roy, S. (2007). Tocotrienols in health and disease: The other half of the natural vitamin E family. Molecular Aspects of Medicine, 28(5-6), 692-728. j.mam.2007.03.001

Smith, R. A. J., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999). Selective targeting of an antioxidant to mitochondria. European Journal of Biochemistry, 263(3), 709–716. 1999.00543.x

Stocker, P., Lesgards, J. F., Vidal, N., Chalier, F., and Prost, M. (2003). ESR study of a biological assay on whole blood: Antioxidant efficiency of various vitamins. Biochimica et Biophysica Acta (BBA) - General Subjects, 1621(1), 1–8.

Sylvester, P. W. (2007). Vitamin E and apoptosis. In Litwak, G (1st Ed.) Volume 76: Vitamins and Hormones (pp. 329–356). San Diego, USA: Academic Press.

Traber, M. G. (2014). Vitamin E inadequacy in humans: Causes and consequences. Advances in Nutrition: An International Review Journal, 5(5), 503-514.

Traber, M. G., and Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43(1), 4–15.

Traber, M. G., and Stevens, J. F. (2011). Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radical Biology and Medicine.

Upadhyay, J., and Misra, K. (2009). Towards the interaction mechanism of tocopherols and tocotrienols (vitamin E) with selected metabolizing

enzymes. Bioinformation, 3(8), 326–331.

Van Blerkom, J. (2009). Mitochondria in early mammalian development. Seminars in Cell & Developmental Biology, 20(3), 354–364.

Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion, 11(5), 797–813.

Vaquero, E. C., Rickmann, M., and Molero, X. (2007). Erratum: Tocotrienols: Balancing the mitochondrial crosstalk between apoptosis and autophagy (Autophagy). Autophagy.

Yoshida, Y., Niki, E., and Noguchi, N. (2003). Comparative study on the action of tocopherols and tocotrienols as antioxidant: Chemical and physical effects. Chemistry and Physics of Lipids, 123(1), 63–75.

Yoshida, Y., Saito, Y., Jones, L. S., and Shigeri, Y. (2007). Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: Physiological significance and prospects as antioxidants. Journal of Bioscience and Bioengineering, 104(6), 439–445. 10.1263/jbb.104.439

Zingg, J. M. (2015). Vitamin E: A role in signal transduction. Annual. Review of Nutrition. 35, 135–173.

Zingg, J. M. (2007). Modulation of signal transduction by vitamin E. Molecular Aspects of Medicine, 28(5-6), 481-506. j.mam.2006.12.009

Zingg, J. M., & Azzi, A. (2004). Non-antioxidant activities of vitamin E. Current Medicinal Chemistry 11(9), 1113-1133. 0929867043365332