Palm tocotrienol-rich-fraction yields higher numbers of normal embryos whereas alpha-tocopherol produces higher preimplantation survival in murine embryos
DOI:
https://doi.org/10.11113/mjfas.v14n3.1129Keywords:
Embryo development, electron transmission microscopy, mitochondria, palm Tocotrienol-Rich-Fraction (TRF), alpha-TocopherolAbstract
Vitamin E contains isomers of tocotrienols and tocopherols. Studies have shown that palm tocotrienol-rich-fraction (TRF) improves preimplantation development of murine embryos. The aim of this study is to investigate the effects of TRF and α-tocopherol supplementation on preimplantation embryonic morphology, development and mitochondrial ultrastructure. Female C57Bl/6 mice were supplemented with 60 mg/kg body weight per day TRF and α-tocopherol for seven days. The females were superovulated and mated with fertile males to obtain 2-cell stage embryos. Initial assessment of normal and abnormal morphology was carried out on 2-cell embryos. The embryos were then cultured until the blastocyst stage. At the 8-cell stage, embryos were subjected to Transmission Electron Microscopy (TEM) to observe their mitochondria. Results showed that palm TRF produced significantly higher numbers of normal 2-cell embryos compared with α-tocopherol (80.9% vs 31.4%) at p< 0.01. Alpha-tocopherol produced higher survival rate to the blastocyst stage compared with palm TRF (42.2% vs 20.6%) at p< 0.01. The TRF group showed more vacuolated mitochondria at 8-cell stage compared to the α-tocopherol group, which may have contributed to a decline in preimplantation survival rates.
References
Aggarwal, B. B., Sundaram, C., Prasad, S., and Kannappan, R. (2010). Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochemical Pharmacology, 80(11), 1613-1631. http://doi.org/10.1016/j.bcp.2010.07.043
Atkinson, J., Epand, R. F., and Epand, R. M. (2008). Tocopherols and tocotrienols in membranes: A critical review. Free Radical Biology and Medicine, 44(5), 739–764. http://doi.org/10.1016/j.freeradbiomed. 2007.11.010
Brigelius-Flohé, R., Kelly, F. J., Salonen, J. T., Neuzil, J., Zingg, J. M., and Azzi, A. (2002). The European perspective on vitamin E: Current knowledge and future research. The American Journal of Clinical Nutrition, 76(4), 703–716. http://www.ncbi.nlm.nih.gov/pubmed/12324281
Catalgol, B., Batirel, S., and Ozer, N. K. (2011). Cellular protection and therapeutic potential of tocotrienols. Current Pharmaceutical Design, 17(21), 2215–2220. http://doi.org/10.2174/138161211796957436
Chakraborty, K., Ramsauer, V. P., Stone, W., and Krishnan, K. (2014). Chapter 24 – Tocotrienols in pancreatic cancer treatment and prevention. In
Preedy, V.R. (1st Ed.) Cancer: Oxidative Stress and Dietary Antioxidants (pp. 247–254). United Kingdom: Academic Press.
https://doi.org/10.1016/C2012-0-02416-7
Cook-Mills, J. M., and McCary, C. (2010). Isoforms of vitamin E differentially regulate inflammation. Endocrine, Metabolic & Immune Disorders - Drug Targets, 10(4), 348–366. http://doi.org/10.2174/1871530311006040348
Dumollard, R., Carroll, J., Duchen, M. R., Campbell, K., and Swann, K. (2009). Mitochondrial function and redox state in mammalian embryos. Seminars in Cell and Developmental Biology, 20(3), 346-353. http://doi.org/ 10.1016/j.semcdb.2008.12.013
Evans, H. M., and Bishop, K. S. (1922). On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science, 56(1458), 650-651. http://doi.org/10.1126/science.56.1458.650
Fujisawa, S., and Kadoma, Y. (2005). Kinetic study of the radical-scavenging activity of vitamin E and ubiquinone. In Vivo, 19(6), 1005–1011. pmid: 16277014
Guerin, P., El Mouatassim, S., and Ménézo, Y (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175–189. http://doi.org/10.1093/humupd/7.2.175
Kamsani, Y. S., Rajikin, M. H., Mohamed Nor Khan, N.-A., Abdul Satar, N., and Chatterjee, A. (2013). Nicotine-induced cessation of embryonic development is reversed by γ-tocotrienol in mice. Medical Science Monitor Basic Research, 19, 87–92. http://doi.org/10.12659/ MSMBR.883822
Le Bras, M., Clement, M. V, Pervaiz, S., and Brenner, C. (2005). Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histology and Histopathology, 20(1), 205–219. http://doi.org/10.14670/ HH-20.205
Marchi, S., Patergnani, S., and Pinton, P. (2014). The endoplasmic reticulum-mitochondria connection: One touch, multiple functions. Biochemica et Biophysica Acta, 1837(4), 461-469. http:// 10.1016/j.bbabio.2013.10.015
Mokhtar N. M., Rajikin M. H., and Zakaria Z. (2008). Role of tocotrienol-rich palm vitamin E on pregnancy and preimplantation embryos in nicotine-treated rats. Biomedical Research, 19(3), 181-184.
Müller, L., Theile, K., and Böhm, V. (2010). In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Molecular Nutrition and Food Research, 54(5), 731–742. http://doi.org/10.1002/mnfr.200900399
Niki, E. (2014). Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radical Biology and Medicine, 66, 3–12. https://doi.org/10.1016/j.freeradbiomed.2013.03.022
Patel, A. Liebner, F. Netscher, T., Mereiter, K., and Rosenau, T. (2007). Vitamin E chemistry. Nitration of non-alpha-tocopherols: Products and mechanistic considerations. Journal of Organic Chemistry, 72 (17), 6504–6512. http://doi.org/10.1021/jo0706832.
Sathananthan, A. H., and Trounson, A. O. (2000). Mitochondrial morphology during preimplantational human embryogenesis. Human Reproduction, 15(Suppl. 2), 148–159. pmid:11041521
Schneider, C. (2005). Chemistry and biology of vitamin E. Molecular Nutrition & Food Research, 49(1), 7–30. http://doi.org/10.1002/mnfr.200400049
Sen, C. K., Khanna, S., and Roy, S. (2007). Tocotrienols in health and disease: The other half of the natural vitamin E family. Molecular Aspects of Medicine, 28(5-6), 692-728. http://doi.org/10.1016/ j.mam.2007.03.001
Smith, R. A. J., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999). Selective targeting of an antioxidant to mitochondria. European Journal of Biochemistry, 263(3), 709–716. http://doi.org/10.1046/j.1432-1327. 1999.00543.x
Stocker, P., Lesgards, J. F., Vidal, N., Chalier, F., and Prost, M. (2003). ESR study of a biological assay on whole blood: Antioxidant efficiency of various vitamins. Biochimica et Biophysica Acta (BBA) - General Subjects, 1621(1), 1–8. https://doi.org/10.1016/S0304-4165(03)00008-4
Sylvester, P. W. (2007). Vitamin E and apoptosis. In Litwak, G (1st Ed.) Volume 76: Vitamins and Hormones (pp. 329–356). San Diego, USA: Academic Press. http://doi.org/10.1016/S0083-6729(07)76012-0
Traber, M. G. (2014). Vitamin E inadequacy in humans: Causes and consequences. Advances in Nutrition: An International Review Journal, 5(5), 503-514. http://doi.org/10.3945/an.114.006254
Traber, M. G., and Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43(1), 4–15. http://doi.org/10.1016/j.freeradbiomed.2007.03.024
Traber, M. G., and Stevens, J. F. (2011). Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radical Biology and Medicine. http://doi.org/10.1016/j.freeradbiomed.2011.05.017
Upadhyay, J., and Misra, K. (2009). Towards the interaction mechanism of tocopherols and tocotrienols (vitamin E) with selected metabolizing
enzymes. Bioinformation, 3(8), 326–331.
Van Blerkom, J. (2009). Mitochondria in early mammalian development. Seminars in Cell & Developmental Biology, 20(3), 354–364. http://doi.org/10.1016/j.semcdb.2008.12.005
Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion, 11(5), 797–813. http://doi.org/10.1016/j.mito.2010.09.012
Vaquero, E. C., Rickmann, M., and Molero, X. (2007). Erratum: Tocotrienols: Balancing the mitochondrial crosstalk between apoptosis and autophagy (Autophagy). Autophagy. http://doi.org/10.4161/auto.5088
Yoshida, Y., Niki, E., and Noguchi, N. (2003). Comparative study on the action of tocopherols and tocotrienols as antioxidant: Chemical and physical effects. Chemistry and Physics of Lipids, 123(1), 63–75. http://doi.org/10.1016/S0009-3084(02)00164-0
Yoshida, Y., Saito, Y., Jones, L. S., and Shigeri, Y. (2007). Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: Physiological significance and prospects as antioxidants. Journal of Bioscience and Bioengineering, 104(6), 439–445. http://doi.org/ 10.1263/jbb.104.439
Zingg, J. M. (2015). Vitamin E: A role in signal transduction. Annual. Review of Nutrition. 35, 135–173. http://doi.org/10.1146/annurev-nutr-071714-034347
Zingg, J. M. (2007). Modulation of signal transduction by vitamin E. Molecular Aspects of Medicine, 28(5-6), 481-506. http://doi.org/10.1016/ j.mam.2006.12.009
Zingg, J. M., & Azzi, A. (2004). Non-antioxidant activities of vitamin E. Current Medicinal Chemistry 11(9), 1113-1133. http://doi.org/10.2174/ 0929867043365332