Emerging of cardiovascular metal stent: A review on drug-eluting stent towards the utilisation of herbal coating

Authors

  • Siti Khadijah Lukman
  • Rania Hussien Al-Ashwal
  • Ahmad Zahran Md. Khudzari
  • Syafiqah Saidin Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-5114-3453

DOI:

https://doi.org/10.11113/mjfas.v15n2.1115

Keywords:

Metal stent, drug-eluting stent, drug coating, cardiovascular

Abstract

Metal stents used in the treatment of percutaneous coronary intervention (PCI) have revolutionized in treating atherosclerosis disease. Starting from the emergence of bare metal stent (BMS), this stent has been progressively developed into drug-eluting stent (DES) and biodegradable stent. By focusing on DES, various drugs have been used to coat metal stent with the aims to overcome in-stent restenosis and stent thrombosis. Even though, both problems are covered successfully by DES, however, DES projects long term complications including late stent thrombosis and delayed endotheliasation. Therefore, the utilisation of various drugs and polymers as a coating material was reviewed in this study to identify possible alternative to overcome the current DES problems. Ginseng is one of the drugs which possess several beneficial properties for the development of DES. Review on its implementation in cardiovascular applications suggests its potential in promoting endotheliasation while inhibiting the growth of smooth muscle cell to prevent late stent thrombosis.

Author Biographies

Siti Khadijah Lukman

Biomaterials; Biomedical engineering, Surface engineering

Syafiqah Saidin, Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Biomaterials; Biomedical engineering, Surface engineering

References

Maulik, N. (2013) Cardiovascular diseases: Nutritional and therapeutic interventions. Florida: CRC Press.

Tan, A., Farhatnia, Y., de Mel, A., Rajadas, J., Alavijeh, M. S., & Seifalian, A. M. (2013). Inception to actualization: Next generation coronary stent coatings incorporating nanotechnology. Journal of Biotechnology. 164(1), 151–170.

Simsekyilmaz, S., Liehn, E. A., Militaru, C., & Vogt, F. (2015). Progress in interventional cardiology: challenges for the future. Thrombosis and Haemostasis, 113(3), 464–472.

Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., Das, S. R, de Ferranti, S., Després, J. -P., Fullerton, H. J., Howard, V. J., Huffman, M. D., Isasi, C. R., Jiménez, M. K., Judd, S. E., Kissela, B. M., Lichtman, J. H., Lisabeth, L. D., Liu, S., Mackey, R. H., Magid, D. J., McGuire, D. K., MohlerIII, E. R., Moy, C. S., Muntner, P., Mussolino, M. E., Nasir, K., Neumar, R. W., Nichol, G., Palaniappan, L., Pandey, D. K., Reeves, M. J., Rodriguez, C. J., Rosamond, W., Sorlie,P. D., Stein, J., Towfighi, A., Turan, T. N., Virani, S. S., Woo, D., Yeh, R. W., & Turner, M. B. (2016). Heart disease and stroke statistics—2016. Circulation, 133(4), e38–e360.

Riley, L., & Cowan, M. (2014). Noncommunicable diseases country profiles. World Health Organization. http://apps.who.int/iris/bitstream /10665/128038/1/9789241507509_eng.pdf. Accessed 23 August 2017.

Iqbal, J., Gunn, J., & Serruys, P. W. (2013). Coronary stents: Historical development, current status and future directions. British Medical Bulletin, 106(1), 193–211.

Joner, M., Finn, A. V., Farb, A., Mont, E. K., Kolodgie, F. D., Ladich, E., Kutys, R., Skorija, K., Gold, H. K., & Virmani R. (2006). Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48(1), 193–202.

Alicea, L. A., Aviles, J. I., López, I. A., Mulero, L. E., & Sánchez, L. A. (2004). Mechanics biomaterials: Stents. Applications of Engineering Mechanics in Medicine, F1–F21.

Rhoades, R., & Bell, D. R. (2009). Medical physiology: Principles for clinical medicine. Pennsylvania: Lippincott Williams & Wilkins.

Iaizzo, P. A. (2010). Handbook of cardiac anatomy, physiology, and devices. New York: Humana Press.

Kim, J. M., Bae, I. -H., Lim, K. S., Park, J. -K., Park, D. S., Lee, S. -Y., Jang, E. -J., Ji, M. S., Sim, D. S., Hong, Y. J., Ahn, Y., Park, J. C., Cho, J. G., Kang, J. C., & Jeong, M.H. (2015). A method for coating fucoidan onto bare metal stent and in vivo evaluation. Progress in Organic Coating. 78, 348–356.

Foerst, J., Vorpahl, M., Engelhardt, M., Koehler, T., Tiroch, K., & Wessely, R. (2013). Evolution of coronary stents: From bare-metal stents to fully biodegradable, drug-eluting stents. Combination Products in Therapy, 3(1), 9–24.

Bhatia, S. K. (2010). Biomaterials for clinical applications. New York: Springer New York.

Garg, S., & Serruys, P. W. Coronary stents current status. Journal of the American College of Cardiology, 56(10s1), S1–S42.

Grüntzig, A. (1978). Transluminal dilatation of coronary-Artery stenosis. The Lancet, 311(8058), 263.

Byrne, R. A., Joner, M., & Kastrati, A. (2015). Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. European Heart Journal, 36(47), 3320–3331.

Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F., & Kappenberger, L. (1987). Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty. The New England Journal of Medicine, 316(12), 701–706.

Hamid, H., & Coltart, J. (2007). ‘Miracle stents’ - A future without restenosis. McGill Journal of Medicine, 10(2), 105–111.

Petrini, L., Wu, W., Gastaldi, D., Altornare, L., Farè, S., Migliavacca, F., Demir, A. G., Previtali, B., & Vedani, M. (2014). Development of biodegradable magnesium alloy stents with coating. Fracture and Structural Integrity, 29, 364–375.

White, C. J. (2005). Drug-eluting stents: Advanced applications for the management of coronary disease. Florida: CRC Press.

Moses, J. W., Leon, M. B., Popma, J. J., Fitzgerald, P. J., Holmes, D.

R., O'Shaughnessy, C., Caputo, R. P., Kereiakes, D. J., Williams, D. O., Teirsten, P. S., Jaeger, J. L., & Kuntz, R. E. (2003). Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. The New England Journal of Medicine, 349(14), 1315–1323.

Vlodaver, Z., Wilson, R. F., & Garry, D. J. (2012). Coronary heart disease: Clinical, pathological, imaging, and molecular profiles. New York: Springer US.

Babapulle, M. N., Joseph, L., Bélisle, P., Brophy, J. M., & Eisenberg, M. J. (2004). A hierarchical Bayesian meta-analysis of randomised clinical trials of drug-eluting stents. The Lancet, 364(9434), 583–591.23.

Gandhi, P. J., & Murthy, Z. V. P. (2012). Investigation of different drug deposition techniques on drug releasing properties of cardiovascular drug coated balloons. Industrial & Engineering Chemistry Research,

(33), 10800–10823.

Zamani, M., Prabhakaran, M. P., Varshosaz, J., Mhaisalkar, P. S., & Ramakrishna, S. (2016). Electrosprayed montelukast/poly (lactic-co-glycolic acid) particle based coating: A new therapeutic approach towards the prevention of in-stent restenosis. Acta Biomaterialia, 42, 316–328.

Charpentier, E., Barna, A., Guillevin, L., & Juliard, J. M. (2015). Fully bioresorbable drug-eluting coronary scaffolds: A review. Archives of Cardiovascular Diseases, 108(6–7), 385–397.

Schurtz, G., Delhaye, C., Hurt, C., Thieuleux, H., & Lemesle, G. (2014). Biodegradable polymer Biolimus-eluting stent (Nobori®) for the treatment of coronary artery lesions: review of concept and clinical results. Medical Devices (Auckland), 7, 35–43.

Kim, S. A., & Lim, S. Y. (2011). A case of stent thrombosis occurred at 5 Years after sirolimus-eluting stent implantation. Chonnam Medical Journal, 47(2), 124–126.

Hermawan, H. (2018). Updates on the research and development of absorbable metals for biomedical applications. Progress in Biomaterials, 7(2), 93–110.

Soares, J. S., & Moore, J. E. (2016). Biomechanical challenges to polymeric biodegradable stents. Annals of Biomedical Engineering, 44(2), 560–579.

Wang, Y., & Zhang, X. (2014). Vascular restoration therapy and bioresorbable vascular scaffold. Regenerative Biomaterials, 1(1), 49–55.

Bowen, P. K., Shearier, E. R., Zhao S., Guillory, R. J., Zhao, F., Goldman, J., & Drelich, J. W. (2016). Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn – alloys. Advanced Healthcare Materials, 5(10), 1121–1140.

Wan, P., Wu, J., Tan, L., Zhang, B., & Yang, K. (2013). Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents. Materials Science and Engineering:C, 33(5), 2885–2890.

Waksman, R. O. N., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., & Tio, F. O. (2008). Short-term effects of biocorrodible iron stents in porcine coronary arteries. Journal of Interventional Cardiology, 21(1), 15–20.

Jiang, W., Tian, Q., Vuong, T., Shashaty, M., Gopez, C., Sanders, T., & Liu. H. (2017). Comparison study on four biodegradable polymer coatings for controlling magnesium degradation and human endothelial cell adhesion and spreading. ACS Biomaterials Science and Engineering, 3(6), 936–950.

Jensen, L. O., Thayssen, P., Hansen, H. S., Christiansen, E. H., Tilsted, H. H., Krusell, L. R., Villadsen, A. B., Junker, A., Hansen, K. N., Kaltoft, A., Maeng, M., Pedersen, K. E., Kristensen, S. D., Bøtker, H. E. Ravkilde, J., Sanchez, R., Aarøe, J., Madsen, M., Sørensen, H. T., Thuesen, L., & Lassen, J. F. (2012). Randomized comparison of everolimus-eluting and sirolimus-eluting stents in patients treated with percutaneous coronary intervention: Clinical perspective. Circulation, 125(10), 1246–1255.

Kimura, T., Morimoto, T., Natsuaki, M., Shiomi, H. Igarashi, K., Kadota, K, Tanabe, K., Morino, Y., Akasaka, T., Takatsu, Y., Nishikawa, H., Yamamoto, Y., Nakagawa, Y., Hayashi, Y.,Iwabuchi, M., Umeda, H., Kawai, K., Okada, H., Kimura, K., Simonton, C.A., Kozuma, K.; RESET Investigators. (2012). Comparison of everolimus-eluting and sirolimus-eluting coronary stents: Clinical perspective. Circulation, 126(10), 1225–1236.

Camenzind, E., Wijns, W., Mauri, L., Kurowski, V., Parikh, K., Gao, R., Bode, C., Greenwood, J. P., Boersma, E., Vranckx, P., McFadden, E., Serruys, P. W., O'Neil, W. W., Jorissen, B., Van Leeuwen, F., Steg, P. G.; PROTECT Steering Committee and Investigators. (2012). Stent thrombosis and major clinical events at 3 years after zotarolimus-eluting or sirolimus-eluting coronary stent implantation: A randomised, multicentre, open-label, controlled trial. The Lancet, 380(9851), 1396–1405.

Kedhi, E., Joesoef, K. S., McFadden, E., Wassing, J., van Mieghem, C., Goedhart, D., Smits, P. C. (2010). Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): A randomised trial. The Lancet, 375(9710), 201–209.

Stone, G. W., Rizvi, A., Newman, W., Mastali, K., Wang, J. C.,

Caputo, R., Doostzadeh, J., Cao, S., Simonton, C. A., Sudhir, K., Lansky, A. J., Cutlip, D. E., Kereiakes, D. J.; SPIRIT IV Investigators. (2010).

Everolimuseluting versus paclitaxel-eluting stents in coronary artery disease. The New England Journal of Medicine, 362(18), 1663–1674.

Lee, S. Y., Bae, I. H., Park, D. S., Jang, E. J., Shim, J. W., Lim, K. S., Park, J. K., Sim, D. S., Jeong, M. H. (2017). Comparison of dextran-based sirolimus-eluting stents and PLA-based sirolimus-eluting stents in vitro and in vivo. Journal of Biomedical Materials Research Part A, 105(1), 301–310.

Simha, V., Qin, S., Shah, P., Smith, B. H., Kremers, W. K., Kushwaha, S., Wang, L., Pereira, N. L. (2016). Sirolimus therapy is associated with elevation in circulating PCSK9 levels in cardiac transplant patients. Journal of Cardiovascular Translational Research, 10(1), 1–7.

Park, D. S., Park, J. K., Jeong, M. H., Bae, I. -H., Lee, S. -Y., Jang, E. J., Lim, K. S., Kim, J. M., Kim, J. H., Hyun, D. Y., Jeong, Y. A., Kim, H. K., Sim, D. S. (2015). Tacrolimus eluting stent with biodegradable polymer is more effective than sirolimus- and everolimus-eluting stent in rabbit iliac artery restenosis model. Macromolecular Research, 23(11), 1034–1041.

Yazdani, S. K., Sheehy, A., Pacetti, S., Rittlemeyer, B., Kolodgie, F. D., & Virmani, R. (2016). Stent coating integrity of durable and biodegradable coated drug eluting stents. Journal of Interventional Cardiology, 29(5), 483–490.

Stone, G. W., Lansky, A. J., Pocock, S. J., Gersh, B. J., Dangas, G., Wong, S. C., Witzenbichler, B., Guagliumi, G., Peruga, J. Z., Brodie, B. R., Dudek, D., Möckel, M., Ochala, A., Kellock, A., Parise, H., Mehran, R.; HORIZONS-AMI Trial Investigators. (2009). Paclitaxel-eluting stents versus bare-metal stents in acute myocardial infarction. The New England Journal of Medicine, 360(19), 1946–1959.

Jazi, S. M. H., Shafiei, S., Zarkesh-Esfahani, S. H., Vareki, S. M., Javanmard, S. H. (2011). The effects of bare metal versus drug-eluting stent implantation on circulating endothelial cells following percutaneous coronary intervention. Journal of Research in Medical Sciences, 16(5), 605–610.

Tao, R., Lu, L., Zhang, R., Hu, J., Ni, J., & Shen, W. (2011). Triptolide inhibits rat vascular smooth muscle cell proliferation and cell cycle progression via attenuation of ERK1/2 and Rb phosphorylation. Experimental and Molecular Pathology, 90(2), 137–142.

Lee, J. W. Y., Lee, B. S., Lee, J. Y., Ku, H. J., Jeon, S. R., Kim, J. Y., Ban, J. M., Sung, S. H., Shin, H. M., Park, J. E. (2011). The herbal extract HMC05 inhibits neointima formation in balloon-injured rat carotid arteries: Possible therapeutic implications of HMC05. Journal of Ethnopharmacology, 133(1), 168–176.

Karki, R., Jeon, E. R., & Kim, D. W. (2012). Magnoliae cortex inhibits intimal thickening of carotid artery through modulation of proliferation and migration of vascular smooth muscle cells. Food and Chemical Toxicology, 50(3), 634–640.

Miswan, Z., Lukman, S. K., Abd Majid, F. A., Loke, M. F., Saidin, S., & Hermawan, H. (2016). Drug eluting coating of ginsenoside Rg1 and Re incorporated poly(lactic-co-glycolic acid) on stainless steel 316L: Physicochemical and drug release analyses. International Journal of Pharmaceutics, 515(1–2), 460–466.

Nuri, T., Yee, J., Gupta, M., Khan, M., & Ming, L. (2016). A review of Panax ginseng as an herbal medicine. Archives of Pharmacy Practice, 7(5), 61–65.

Court, W. E. (2003). Ginseng, the Genus Panax. Florida: CRC Press.

Biswas, T., Mathur, A. K., & Mathur, A. (2017). A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Applied Microbiology and Biotechnology, 101(10), 4009–4032.

Kim, H. G., Cho, J. H., Yoo, S. R., Lee, J. S., Han, J. M., Lee, N. H., Ahn, Y. C., Son, C. G. (2003). Antifatigue effects of Panax ginseng C.A. Meyer: A randomised, double-blind, placebo-controlled trial. PLoS One, 8(4), e61271–e61294.

Qin, N., Yang, W., Feng, D., Wang, X., Qi, M., Du, T., Sun, H., Wu, S.

(2016). Total ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats: involvement of nitric oxide and mitogenactivated protein kinase pathways. Journal of Ginseng Research, 40(3), 285–291.

He, J., Li, & Y. -L., (2015). Ginsenoside Rg1 downregulates the shear stress induced MCP-1 Expression by inhibiting MAPK signaling pathway. The American Journal of Chinese Medicine, 43(02), 305–317.

Sun, Y., Liu, Y., & Chen, K. (2016). Roles and mechanisms of ginsenoside in cardiovascular diseases: progress and perspectives. Science China Life Sciences, 59(3), 292–298.

Shi, A. W., Wang, X. B., Lu, F.X., Zhu, M. M., Kong, X. Q., & Cao, K. J. (2009). Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation. Acta Pharmacologica Sinica, 30(3), 299–306.

Jovanovski, E., Bateman, E. A., Bhardwaj, J., Fairgrieve, C., Mucalo, I., Jenkins, A. L., Vuksan, V. (2014). Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: A randomized controlled trial. Journal of the American Society of Hypertension, 8(8), 537–541.

Du, J., Cui, C. H., Park, S. C., Kim, J. –K., Yu, H. –S., Jin, F. X., Sun, C., Kim, S. C., Im, W. T. (2014). Identification and characterization of a gnsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg2(S). PLoS One, 9(6), e96914.

Zu, G., Guo, J., Che, N., Zhou, & T., Zhang, X. (2016). Protective effects of ginsenoside Rg1 on intestinal ischemia/reperfusion injury-induced oxidative stress and apoptosis via activation of the Wnt/β-catenin pathway. Scientific Reports, 6(38480), 1–10.

Kim, Y. M., Kim, J. H., Kwon, H. M., Lee, D. H., Won, M. H., Kwon, Y. G., Kim, Y. M. (2013). Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation. Journal of Ginseng Research, 37(4), 413–424.

Yu, T., Yang, Y., Kwak, Y. S., Song, G. G., Kim, M. Y., Rhee, M. H., Cho, J. Y. (2017). Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. Journal of Ginseng Research, 41(2), 127–133.

Downloads

Published

16-04-2019