Zinc oxide nanowires synthesized using a hot tube thermal evaporation under intermediate heating period

Authors

  • Samsudi Sakrani
  • Peshawa Omer Amin
  • Syahida Suhaimi

DOI:

https://doi.org/10.11113/mjfas.v9n4.109

Keywords:

Hot-tube thermal evaporation, ZnO Nanowires, Vapour-liquid-solid mechanism,

Abstract

Zinc oxide nanowires have been synthesized using a hot tube vacuum evaporation method. Essentially, ZnO powder and silicon substrate were placed in upper and lower streams of a horizontal quartz tube, respectively and heated via a furnace up to 960 C for about 1 hour. During the heating process, evaporated ZnO vapour was transported to lower stream and deposited onto the substrate containing Au catalyst at constant pressure of 1 torr. The substrate tilt angles were chosen for 0° and 30° and argon flow rates between 1.1-5.0 sccm. Observation on FESEM/EDX and field emission results
revealed the optimal growth of ZnO nanowires which occurred at an angle 30° and flow rate of 5 sccm. Parameters such as atom% of Zn and O and aspect ratio were measured and analysed.

References

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F.

Kim and H. Yan, Adv. Mater 15 (2003) 353-389.

W.I. Park, D.H. Kim, S.W. Jung and G.C. Yi, Appl. Phys. Lett., 80

(2002) 4232-4234.

B.P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki and N. Usami,

Appl. Phys. Lett., 83 (2003) 1635-1637.

Y.C. Kong, D.P. Yu, B. Zhang, W. Fang and S.Q Feng, Appl. Phys.

Lett., 78 (2001), 407-409.

Y. Sun, G.M. Fuge and M.N.R. Ashfold, Chem. Phys. Lett., 396

(2004) 21-26.

M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang,

Adv. Mater., 13 (2001) 113-116.

C. Li, G. Fang, S. Xu, D.S. Zhao and X.Z. Zhao, Nanotechnology,

(2006) 5367-5372.

H.J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A.

Krost and M. Zacharias, J. Cryst. Growth, 287 (2006) 34-38.

S.Y. Li, C.Y. Lee and T.Y. Tseng, J. Cryst. Growth, 247 (2003)

-362.

P.X. Gao, Y. Dinh and Z.L. Wang, Nano Lett., 9 (2004) 1315-1320.

Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu and I.C.

Chen, Adv. Funct. Mater., 13 (2003) 811-814.

S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh and H.J. Lee, Chem. Mater.,

(2003) 3294-3299.

Y. Zhang, H. Jia and D.Yu, J. Phys. D: Appl. Phys., 37 (2004) 413-

H.C. Hsu, C.S. Cheng, C.C. Chang, S. Yang, C.S. Chang and W.F.

Hsieh, Nanotechnology, 16 (2005) 297-301.

N. Wang, Y. Chai and R.O. Zhang, Mater. Sci. and Engineering,

R60 (2008) 1-51.

J. Yang,, D. Wang, L. Yang, Y. Zhang, G. Xing, J. Lang, H. Fan,

M. Gao and Y. Wang, Journal of Alloys and Compounds, 86 (4)

(2007) 433 – 440.

H. I. Abdulgafour, Z. Hassan, N. H. Al Hardan and F. K. Yam,.

Physica B, 405(2010) 4216-4218.

J. H. Zeng, Y. L. Yu, Y. F. Wang,. and T. J. Lou, Acta material, 57

(2009) 1813–1820.

G. Meng, X. Fang, W. Dong, R. Tao, Y. Zhao, Z. Deng, S. Zhou, J.

Shao and L. Li, Applied Surface Science, 256(2010) 6543–6549.

F. G¨uell, J.O. Osso, A.R. Go¨ni, A. Cornet and J.R. Morante,

Superlattices and Microstructures, 45(2009) 271–276.

Downloads

Published

06-10-2014