Effect of particle size and co-extractant in Momordica charantia extract yield and diffusion coefficient using supercritical CO2
DOI:
https://doi.org/10.11113/mjfas.v14n3.1086Keywords:
Momordica charantia, co-extractant, supercritical carbon dioxide, particle size, diffusion coefficientAbstract
Supercritical carbon dioxide (SC-CO2) is a fluid with high diffusivity and low viscosity which can penetrate deep into the solid particle efficiently compared to liquid or gas. SC-CO2 commonly used as a green solvent in the modern extraction of bioactive compound from plants. Sometimes, a co-solvent was added in the system to increase solvent polarity or mix a co-extractant with dried sample to improve solute’s transport properties. Hence, the aim of this study was to determine Momordica charantia extract yield with different mean particle size as well as diffusion coefficient, De in the extraction process with and without co-extractant. Different mean particle sizes used were 0.2, 0.3, 0.5 and 0.7 mm at constant operating condition (20 MPa, 65 oC and 4 mL/min). A ratio 1:3 of pure ethanol was used in the extraction process with co-extractant. Based on the results, mean particle size of 0.3 mm gave the highest extract yield, 3.32% and 1.34% with and without co-extractant respectively. Whereas, the value of De at 0.3 mm mean particle size, with and without co-extractant are 8.820 x 10-12 and 7.920 x 10-12 m2/s respectively. Therefore, 0.3 mm is the best mean particle size to produce highest Momordica charantia extract yield and De value in SC-CO2 extraction with co-extractant.References
Arsad, N. H., Yunus, M. A. C., Zaini, M. A. A., Rahman, Z. A., & Idham, Z. (2016). Effect of Operating Conditions of Supercritical Carbon Dioxide on Piper Betle Leave Oil Yield and Antioxidant Activity. International Journal of Applied Chemistry, 12(4), 741-751.
Bartle, K. D., Clifford, A. A., Hawthorne, S. B., Langenfeld, J. J., Miller, D. J., & Robinson, R. (1990). A model for dynamic extraction using a supercritical fluid. The Journal of Supercritical Fluids, 3(3), 143-149.
Ciurlia, L., Bleve, M., & Rescio, L. (2009). Supercritical carbon dioxide co-extraction of tomatoes (Lycopersicum esculentum L.) and hazelnuts (Corylus avellana L.): A new procedure in obtaining a source of natural lycopene. The Journal of Supercritical Fluids, 49(3), 338-344.
Crank, J. (1975). The Mathematics of Diffusion (2nd ed.). Bristol, England: Clarendon Press.
Danlami, J. M., Arsad, A., Zaini, M. A. A., & Sulaiman, H. (2014). A comparative study of various oil extraction techniques from plants. Rev
Chem Eng, 30(6), 605-626.
Danlami, J. M., Zaini, M. A. A., Arsad, A., & Yunus, M. A. C. (2015). Solubility assessment of castor (Ricinus communis L) oil in supercritical CO2 at different temperatures and pressures under dynamic conditions. Industrial Crops and Products, 76, 34-40.
Durante, M., Lenucci, M. S., D’Amico, L., Piro, G., & Mita, G. (2014). Effect of drying and co-matrix addition on the yield and quality of supercritical CO2 extracted pumpkin (Cucurbita moschata Duch.) oil. Food Chemistry, 148, 314-320.
Feisul, I. M., & Soraya, A. (2013). National Diabetes Registry, 2009-2012. Retrieved from http://www.moh.gov.my/
Fuangchan, A., Sonthisombat, P., Seubnukarn, T., Chanouan, R., Chotchaisuwat, P., Sirigulsatien, V., Ingkaninan, K., Plianbangchang, P., &
Haines, S. T. (2011). Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. Journal of Ethnopharmacology, 134(2), 422-428.
Hadzri, H. M., Yunus, M. A. C., Zhari, S., & Rithwan, F. (2014). The Effects of Solvents and Extraction Methods on the Antioxidant Activity of P. niruri. Jurnal Teknologi (Sciences & Engineering), 68(5), 47-52.
Hatami, T., Cavalcanti, R. N., Takeuchi, T. M., & Meireles, M. A. A. (2012). Supercritical fluid extraction of bioactive compounds from Macela (Achyrocline satureioides) flowers: Kinetic, experiments and modeling. The Journal of Supercritical Fluids, 65, 71-77.
Huang, Z., Yang, M.-J., Liu, S.-F., & Ma, Q. (2011). Supercritical carbon dioxide extraction of Baizhu: Experiments and modeling. The Journal of Supercritical Fluids, 58(1), 31-39.
Kluson, D. P., Maksimovic, S., Ivanovic, J., & Skala, D. (2012). CHISA 2012 Supercritical Extraction of Essential Oil from Mentha and Mathematical Modelling– the Influence of Plant Particle Size. Procedia Engineering, 42, 1767-1777.
Liong, K. K., Wells, P. A., & Foster, N. R. (1991). Diffusion in supercritical fluids. The Journal of Supercritical Fluids, 4(2), 91-108.
López-Padilla, A., Ruiz-Rodriguez, A., Reglero, G., & Fornari, T. (2016). Study of the diffusion coefficient of solute-type extracts in supercritical carbon dioxide: Volatile oils, fatty acids and fixed oils. The Journal of Supercritical Fluids, 109, 148-156.
Medina, I. (2012). Determination of diffusion coefficients for supercritical fluids. Journal of Chromatography A, 1250, 124-140.
Melo, M. M. R. d., Silvestre, A. J. D., & Silva, C. M. (2014). Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. The Journal of
Supercritical Fluids, 92, 115-176.
Nasir, H. M. (2017). Bioactivities and Fitting Models of Quercus Infectoria Galls Extracts using Supercritical Carbon Dioxide. (Doctor of Philosophy (Bioprocess Engineering)), Universiti Teknologi Malaysia, Malaysia.
Özkal, S. G., & Yener, M. E. (2016). Supercritical carbon dioxide
extraction of flaxseed oil: Effect of extraction parameters and mass transfer modeling. The Journal of Supercritical Fluids, 112, 76-80.
Park, H.-S., Lee, H. J., Shin, M. H., Lee, K.-W., Lee, H., Kim, Y.-S., Kim, K. O., & Kim, K. H. (2007). Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide. Food Chemistry, 105(3), 1011-1017.
Pitipanapong, J., Chitprasert, S., Goto, M., Jiratchariyakul, W., Sasaki, M., & Shotipruk, A. (2007). New approach for extraction of charantin from Momordica charantia with pressurized liquid extraction. Separation and Purification Technology, 52(3), 416-422.
Reverchon, E., Donsi, G., & Sesti Osseo, L. (1993). Modeling of supercritical fluid extraction from herbaceous matrices. Industrial & Engineering Chemistry Research, 32(11), 2721-2726.
Ruslan, M. S. H., Idham, Z., Nian Yian, L., Ahmad Zaini, M. A., & Che Yunus, M. A. (2018). Effect of operating conditions on catechin extraction from betel nuts using supercritical CO2-methanol extraction. Separation Science and Technology, 53(4), 662-670.
Ruslan, M. S. H., Yunus, M. A. C., Idham, Z., Morad, N. A., & Ali, A. (2015). Parametric Evaluation for Extraction of Catechin from Areca Catechu Linn Seeds using Supercritical CO2 Extraction. Jurnal Teknologi, 74(7), 87-92.
Samadi, S., & Vaziri, B. M. (2017). Two-structured solid particle model for predicting and analyzing supercritical extraction performance. Journal of Chromatography A, 1506, 101-108.
Santos, R., Lu, T., Schlieper, L., King, M. B., & Bastos, J. (1996). Extraction of useful components from herbs using supercritical CO2: Experimental findings and data modelling. Process Technology Proceedings, 12, 399-404.
Setapar, S. H. M., Yian, L. N., Yunus, M. A. C., Muhamad, I. I., & Zaini, M. A. A. (2012). Extraction of Rubber (Hevea brasiliensis) Seeds Oil Using Supercritical Carbon Dioxide. Journal of Biobased Materials and Bioenergy, 6, 1 - 6
Shanmugapriya, R., & Poornima, S. (2014). Detection of Charantin in the leaves and fruits of Momordica tuberosa (Cogn) Roxb and Momordica dioica (Roxb Ex Wild) by Analytical HPTLC. International Journal of Scientific and Research Publications, 4(6), 1-8.
Silva, M. V. d., & Delgado, J. M. P. Q. (2011). Extraction of Useful Food and Cosmetic Ingredients of Vegetable Origin. Defect and Diffusion Forum, 312-315, 1161-1166.
Vladić, J., Zeković, Z., Jokić, S., Svilović, S., Kovačević, S., & Vidović, S. (2016). Winter savory: Supercritical carbon dioxide extraction and mathematical modeling of extraction process. The Journal of Supercritical Fluids, 117, 89-97.
Wang, H.-Y., Kan, W.-C., Cheng, T.-J., Yu, S.-H., Chang, L.-H., & Chuu, J.-J. (2014). Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food and Chemical Toxicology, 69, 347-356.
Yang, S. J., Choi, J. M., Park, S. E., Rhee, E. J., Lee, W. Y., Oh, K. W., Park, S. W., & Park, C.-Y. (2015). Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. The Journal of Nutritional Biochemistry, 26(3), 234-240.
Yasir, M., Sultana, B., Nigam, P. S., & Owusu-Apenten, R. (2016). Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC–ESIMS/MS identification of phenolic components. Food Chemistry, 199, 307-313.
Yunus, M. A. C., Zhari, S., Haron, S., Arsad, N. H., Idham, Z., & Ruslan, M. S. H. (2015). Extraction and Identification of Vitamin E from Pithecellobium Jiringan Seeds Using Supercritical Carbon Dioxide. Jurnal Teknologi, 74(7), 29-33.
Zhang, B., Xie, C., Wei, Y., Li, J., & Yang, X. (2015). Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves. Protein Expression and Purification, 107, 43-49.