Extraction of β-sitosterol from Swietenia mahagoni seeds by using supercritical carbon dioxide (SC-CO2) extraction


  • Nur Salsabila Md Norodin UniversitiTeknologi Malaysia
  • Liza Md Salleh Universiti Teknologi Malaysia
  • Siti Machmudah Sepuluh Nopember Institute of Technology
  • Nik Musaadah Mustafa Forest Research Institute Malaysia (FRIM)
  • Hartati Hartati Universitas Negeri Makassar
  • Ramdan Ismail Universiti Teknologi Malaysia




Swietenia mahagoni seeds, β-sitosterol, supercritical CO2 extraction, response surface methodology


This work investigates the effect of supercritical carbon dioxide (SC-CO2) extraction conditions (pressure and temperature) on the oil yield and β-sitosterol content extracted from Swietenia mahagoni seeds by using response surface methodology (RSM). The experimental data obtained were fitted to a second-order polynomial model and the obtained oil yields were 1.49-14.45%, while β-sitosterol content obtained were 3.12-9.20 mg/g. The best conditions within the ranges studied were 30 MPa and 40°C to extract β-sitosterol in the highest amount. The present findings show that S. mahagoni seeds extract has a high concentration of β-sitosterol.

Author Biographies

Nur Salsabila Md Norodin, UniversitiTeknologi Malaysia

Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering

Liza Md Salleh, Universiti Teknologi Malaysia

Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering

Siti Machmudah, Sepuluh Nopember Institute of Technology

Chemical Engineering Department

Nik Musaadah Mustafa, Forest Research Institute Malaysia (FRIM)

Natural Product Division

Hartati Hartati, Universitas Negeri Makassar

Department of Biology

Ramdan Ismail, Universiti Teknologi Malaysia

Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering


Aionicesei, E., Škerget, M., and Knez, Ž. 2008. Measurement of CO2 solubility and diffusivity in poly(1-lactide) and poly(d,1-lactide-co-glycolide) by magnetic suspension balance. J. Supercri. Fluids. 47, 296-301.

Andras, C. D., Simandi, B., Orsi, F., Lambrou, C., Missopdinou-Tatala, D., Panayiotou, C., Dmokus, J., and Doleschall, F. 2005. Supercrtical carbon dioxide extraction of okra (Hibiscus esculentus L.) seeds. J. Sci. Food. Agri. 85, 1415-1419.

Balijepalli. M. K., Suppaiah, V., Chin, A. M., Buru, A. S., Saqineedu, S. R., and Pichika, M. R. 2014. Acute oral toxicity studies of Swietenia macrophylla seeds in sprague dawley rats. Pharmacognosy Res. 7, 38-44.

Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., and Escaleira, L. A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76, 965-977.

Blundell, A. G., and Gullison, R. E. 2003. Poor regulatory capacity limits the ability of science to influence the management of mahogany. For. Policy Econ. 5, 395-405.

Catchpole, O. J., Perry, N. B., Da Silva, B. M. T., Grey, J. B., and Smallfield, B. M. 2002. Supercritical extraction of herbs I: Saw Palmetto, St John’s Wort, Kava root, and Echinacea. J. Supercrit. Fluids. 22, 129-138.

Cossuta, D., Simandi, B., Vagi, E., Hohmann, J., Prechl, A., Lemberkovics, E., Kery, A., and Keve, T. 2008. Supercritcal fluid extraction of Vitex agnus castus fruit. J. Supercrit. Fluids. 47, 188-194.

Cvjetko, M. 2012. Optimization of the supercritical CO2 extraction of oil from rapeseed using response surface methodology. Food Technology and Biotechnology. 50, 2, 208-215.

De Azevedo, A. B. A., Mazzafera, P., Mohamed, R. S., Vieira De Melo, S. A. B., Kieckbusch, T. G. 2008. Extraction of caffeine, cholorogenic acids and lipids from green coffee beans using supercritical carbon

dioxide and co-solvents. Brazilian J. Chem. Eng. 25, 543-552.

Eid, A. M. M., Elmarzugi, N. A., El-Enshasy, H. A. 2013. A review on the phytopharmacological effect of Swietenia macrophylla. Int. J. Pharma. Sci. 5, 47-53.

Falah, S., Suzuki, T., Katayama, T. 2008. Chemical constituents from Swietenia macrophylla bark and their

antioxidant activity. Pakistan J. Biol. Sci. 11, 2007-2012.

Goh, B. H., Abdul Kadir, H., Abdul Malek, S., Ng, S.W. 2010. Swietenolide diacetate from the seeds of Swietenia macrophylla. Acta Crystallogr. Sect. E Struct. Report Online. 66, 6, o1396.

Goh, B. H., and Kadir, H. A. 2011. In vitro cytotoxic potential of Swietenia macrophylla King seeds against human carcinoma cell lines. J. Med. Plants Res. 5, 1395-1404.

Hartati, Salleh, L. M., Mohd Yunus, A. C., and Aziz, A. A. 2014. Optimization of supercritical CO2 extraction of Swietenia mahagoni seed by response surface methodology. J. Teknol. 67, 15-20.

Hashim, M. A., Yam, M. F., Hor, S. Y., and Lim, C. P. 2013. Anti-hyperglycemic activity of Swietenia macrophylla King (meliaceae) seed extracts in normoglycaemic rats undergoing glucose tolerance test. Chin. Med. 8, 11.

Haque, M. A., Khan, G. M. A., Razzaque, S. M. A., Khatun, K., Chakraborty, A. K., and Alam, M. S. 2013. Extraction of rubiadin dye from Swietenia mahagoni and its dyeing characterictics onto silk fabric using metallic mordants. Indian J. Fibre Text. Res. 38, 280-284.

Henika. R. G. 1982. Use of response-surface methodology in sensory evaluation. Food Technology. 36, 96-100.

Hu, Q., Pan, B., Xu, J., Sheng, J., and Shi, Y. 2007. Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts. J. Food Eng. 80, 997-1001.

Kawahito, Y., Kondo, M., Machmudah, S., Sibano, K., Sasaki, M., and Goto, M. 2008. Supercritical CO2 extraction of biological active compounds from loquat seed. Sep. Purif. Technol. 61, 130–135.

King, J. W., Mohamed, A., Taylor, S. L., Mebrahtu, T., and Paul, C. 2001. Supercritical fluid extraction of Vernonia galamensis seeds. Ind. Crops Prod. 14, 241-249.

Krichnavaruk, S., Shotipruk, A., Goto, M., and Pavasant, P. 2008. Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. Bioresour. Technol. 99, 5556–5560.

Lee, B. C., Kim, J. D., Hwang, K. Y., and Lee, Y. Y. 1991. Extraction of oil from evening primrose seed with supercritical carbon dioxide. Supercrit. Fluid Process. Biomater. 168-180.

Liu, S., Yang, F., Zhang, C., Ji, H., Hong, P., and Deng, C. 2009. Optimization of parameters for supercritical carbon dioxide extraction of Passiflora seeds oil by response surface methodology. J. Supercrit. Fluids. 48, 9-14.

Liza, M. S., Abdul Rahman, R., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M. and Hamid, A. 2010. Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes cripus (Pecah kaca). Food Bioprod. Process. 88, 319-326.

Luque de Castro, M. D., Valcarcel, M., and Tena, M. T. 1994. Analytical Supercritical Fluid Extraction, Germany: Springer-Verlag.

Machmudah, S., Kawahito, Y., Sasaki, M., and Goto, M. 2007. Supercritical CO2 extraction of rosehip seed oil: Fatty acids composition and process optimization. J. Supercrit. Fluids. 41, 421–428.

Maiti, A., Dewanjee, S., Kundu, M., and Mandal, S. C. 2009. Evaluation of antidiabetic activity of the seeds of Swietenia macrophylla in diabetic rats. Pharma. Biol. 47, 132-136.

Mironeasa, S., Codină, G. G., and Mironeasa, C. 2016. Optimization of wheat-grape seed composite flour to improve alpha-amylase activity and dough rheological behavior. Int. J. Food. Prop. 19, 859-872.

Mohd Azizi, C. Y., Salman, Z., Nik Norulaini, N. A., and Mohd Omar, A. K. 2007. Extraction and identification of compounds from Parkia speciose seeds by supercritical carbon dioxide. J. Chem. Nat. Resour. Eng. Spec. Ed. 153-163.

Mustpha, A. N., Manan, Z. A., Mohd Azizi, C. Y., Nik Norulaini, N. A., and Omar, A. K. M. 2009. Effects of parameters on yield for sub-critical R134a extraction of palm oil. J. Food Eng. 95, 606-616.

Nei, H. Z. N., Fatemi, S., Salimi, A. R., Vatanara, A., and Najafabadi, A. R. 2009. Enrichment of omega 3 fatty acids from Tyulka oil by supercritical CO2 extraction. J. Chem. Technol. Biotechnol. 84, 1854-1859.

Nik Norulaini, N. A., Setianto, W. B., Zaidul, I. S. M., and Nawi, A. H. 2009. Effects of supercritical carbon dioxide extraction parameters on virgin coconut oil yield and medium-chain triglyceride content. Food Chem. 116, 193-197.

Nyam, K. L., Tan, C. P., Karim, R., Lai, O. M., Long, K., and Che Man, Y. B. 2010. Extraction of tocopherol-enriched oils from Kalahari melon and roselle seeds by supercritical fluid extraction (SFE-CO2). Food Chem. 119, 1278–1283.

Nyam, K. L., Tan, C. P., Lai, O. M., Long, K., and Che Man, Y. B. 2010. Optimization of supercritical fluid extraction of phytosterol from roselle seeds with a central composite design model. Food Bioprod. Process. 88, 239–246.

Pereira, C. G., and Meireles, M. A. A. 2009. Supercritical fluid extraction of bioactive compounds: Fundamentals, application and economic perspectives. Food Bioprocess Technol. 3, 340-372.

Rastogi, N. K., and Rashmi, K. R. 1999. Optimization of enzymatic liquefaction of mango pulp by response surface methodology. Eur. Food. Res. Technol. 209, 57-62.

Rodriguez-Nogales, J. M., Roura, E., and Contreras, E. 2005. Biosynthesis of ethyl butyrate using immobilized lipase: A statistical approach. Process Biochem. 40, 63-68.

Said, P. P., Sharma, N., Naik, B., and Pradhan, R. C. 2014. Effect of pressure, temperature and flow rate on supercritical carbon dioxide extraction of bottle gourd seed oil. Int. J. Food. Nutr. Sci. 3, 14-17.

Sánchez-Machado, D. I., López-Hernández, J., Paeiro-Losada, P., and López-Cervantes, J. 2004. An HPLC

method for the quantification of sterols in edible seaweeds. Biomed. Chromatogr. 18, 183-190.

Sajfrtová, M., Licková, I., Wimmerová, M., Sovová, H., and Wimmer, Z. 2010. β-Sitosterol supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds. Int. J. Mol. Sci. 11, 1842-1850.

Sharif, K. M., Rahman, M. M., Azmir, J., Mohamed, A., Jahuru, M. H. A., Sahena, F., Zaidul, I. S. M. 2014. Experimental design of supercritical fluid extraction – A review. J. Food Eng. 124, 105-116.

Simandi, B., Kristo, S. T., Kery, A., Selmeczi, L. K., Kmecz, I., and Kemény, S. 2002. Supercritical fluid extraction of dandelion leaves.

Sin, H. N., Yusof, S., Hamid, N. S. A., and Rahman, R. A. 2006. Optimization of enzymatic clarification of sapodilla juice using response surface methodology. J. Food. Eng. 73, 313-319.

Sun, M., and Temelli, F. 2006. Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. J. Supercrit. Fluids. 37, 397-408.

Vasapollo, G., Longo, L., Rescio, L., and Ciurlia, L. 2004. Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J. Supercrit. Fluids. 29, 87–96.

Viganó, J., Coutinho, J. P., Souza, D. S., Baroni, N. A. F., Helena, T. G., Juliana, A., and Julian, M. 2016. Exploring the selectivity of supercritical CO2 to obtain nonpolar fractions of passion fruit bagasse extracts. J. Supercrit. Fluids. 100, 1-10.

Vilegas, J. H. Y., de Marchi, E., and Lancas, F. M. 1997. Extraction of low polarity compounds (with emphasis on coumarin and kaurenoic acid) from Mikania glomerata (“guaco”) leaves. Phytochem. Anal. 8, 266-270.

Vogel, H. C., and Todaro, C. L. 1997. Fermentation and Biochemical Engineering Handbook. (3rd ed.). Westwood, New Jersey, U.S.A. Elsevier Inc.