Release of curcumin incorporated in albumin loaded silica
DOI:
https://doi.org/10.11113/mjfas.v14n1.1059Keywords:
Silica, Albumin, Curcumin, Co–carrier, Composition, Release mechanism, Intermolecular interaction,Abstract
In this work, we have prepared a new drug delivery system consisting of silica (SiO2) as the main carrier, while albumin acted as the co–carrier in order to control the release of drug. The system was prepared by simple wet chemical method. The efficiency of the designed system was tested in the delivery of a hydrophobic drug, curcumin through an in–vitro procedure. The results show that the release percentage of curcumin was increased with the presence of the co–carrier. The intermolecular interaction of curcumin with albumin and the competition between them to locate on the surface of silica affect the release system. Besides, the curcumin release amount was corresponded to the composition of the silica carrier in the systems. Consequently, the potential for silica/albumin use as a drug carrier was ascertained.References
Aswathy, R.G., Sivakumar, B., Brahatheeswaran, D., Fukuda, T., Yoshida, Y., Maekawa, T., Kumar, D.S. 2012. Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 1–7.
Barbe, C., Barlett, J., Kong, L., Kim, F., Lin, H. Q., Calleja, G. 2004. Silica particles: a novel drug delivery system. Adv. Mater. 16, 1–18.
Chereddy, K. K., Coco, R., Memvaga, P. B., Ucakar, B., Rieux, A. Vandermeulen, G., Préat, V. 2013. Combined effect of PLGA and curcumin on wound healing activity. J. Control. Release 171, 208–215.
Diab, R., Canilho, N., Pavel, I. A., Haffner, F. B., Girardon, M., Pasc, A. 2017. Silica–based systems for oral delivery of drugs, macromolecules and cells. Adv. Colloid Interface Sci. 249, 346–362.
Elzoghby, A.O., Samy, W.M., Elgindy, N.A. 2012. Protein–based Nanocarriers as Promising Drug and Gene Delivery Systems. J. Control. Release 161, 38–49.
Fu, K., Griebenow, Hsieh, L., Klibanov, A. M., Langer, R. 1999. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J. Control. Release 58, 357–366.
Gangwar, R.K., Tomar, G.B., Dhumale, V.A., Zinjarde, S., Sharma, R. B., Datar, S. 2013. Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J. Agric. Food Chem. 61, 9632–9637.
Hatamie. S., Nouri, M., Karandikar, S.K., Kulkarni, A., Dhole, S.D., Phase, D.M., Kale. S.N. 2012. Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Mater. Sci. Eng. C. 32, 92–97.
Higuchi, T. 1963. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52(12), 1145–1149.
Horcajada, P., Serre, C., Vallet–Regi, M., Gerard, F. 2006. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 118, 6120–6124.
Ibrahim, I.A.M., Zikry, A.A.F., A.Sharaf, M. 2010. Preparation of spherical silica nanoparticles: Stöber silica. J. Am. Sci. 6, 985–989.
Jithan, AV., Madhavi, K., Madhavi, M., Prabhakar, K. 2011. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int. J. Pharm. Invest. 1, 119–125.
Kong, J., Yu, S. 2007. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochm. Biophy. Sin. 39(8), 549–559.
Kumar, K. V., Khaddour, I. A., Gupta,V. K. 2010. A pseudo second–order kinetic expression for dissolution kinetic profiles of solids in solutions. Ind. Eng. Chem. Res. 49, 7257–7262.
Leung, M., Harada, T., Dai, S., Kee, T.W. 2015. Nanoprecipitation and spectroscopic characterization of curcumin–encapsulated polyester nanoparticles. Langmuir. 31, 11419–11427.
Mathew, A., Fukuda, T., Nagaoka, Y., Hasumura, T., Morimoto, H., Yoshida, Y., Maekawa, T., Venugopal, K., Kumar, D. S. 2012. Curcumin loaded PLGA nanoparticles conjugated with Tet–1 peptide for potential use in Alzheimer’s disease. PLOS ONE. 7(3), 1–10.
Mhlanga, N., Ray, S. S. 2015. Kinetic models for the release of the anticancer drug doxorubicin from biodegradable Polylactide/metal oxide–based hybrids. Int. J. Biol. Macromol. 72, 1301–1307.
Mohanta, V., Madras, G., Patil, S. 2013. Albumin–mediated incorporation of water–insoluble therapeutics in layer–by–layer assembled thin films and microcapsules. J. Mater. Chem. 1, 4819–4827.
Nafisi, S., Sadeghi, G.B., Panahy, A. 2011. Interaction of aspirin and vitamin c with bovine serum albumin. J. Photochem. Photobiol., B. 105, 198–202.
Popat, A., Liu, J., Lua, G.Q., Qiao, S.Z. 2012. A pH–responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem. 1–6.
Quintanar–Guerrero, D., Ganem–Quintanar,A., Nava–Arzaluz, M. G., Piñón–Segundo, E. 2009. Silica xerogels as pharmaceutical drug carrier. Expert Opin. Drug Delivery. 6(5), 485–498.
Siepmann, J., A. Siegel, R., Rathbone, M.J. 2012. Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology. Springer.
Steven, C. R., Busby, G. A., Mather, C., Tariq, B., Briuglia, M. L., Lamprou, D. A., Urquhart, A. J., Grant, M.H., Parthwardhan, S. H. 2014. Bioinspired silica as drug delivery systems and their biocompatibility. J. Mater. Chem. B. 2, 5028–5042.
Thomas, C., Pillai, L.S., Krishnan, L. 2014. Evaluation of albuminated curcumin as soluble drug form to control growth of cancer cells in vitro. J. Cancer Ther. 5, 723–734.
Wilson, C. G., Crowley, P. J. 2011. Controlled Release in Oral Drug Deliver. New York: Springer.
Yadav, D., Kumar, N. 2014. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Int. J. Pharm. 477(1–2), 564–577.