Effect of heating rates on the microstructure and gas permeation properties of carbon membranes
DOI:
https://doi.org/10.11113/mjfas.v14n3.1024Keywords:
Gas permeation, heating rates, polyimide, nanocrystalline cellulose, carbon membraneAbstract
High performance tubular carbon membrane (TCM’s) for CO2 separation were prepared by controlling the carbonization heating rates in range of 1-7 oC/min carbonized at 800 oC under Argon environment. A single permeation apparatus was used to determine the gas permeation properties of the membrane at room temperature. Fine turning of the carbonization condition was necessary to obtain the desired permeation properties. The preparation of PI/NCC-based TCM at low heating rate caused the gas permeance for the examined gas N2 and CO2 decreased whereas the selectivity of CO2/N2 increased. It was also identified that the gas permeation properties of the resultant TCM and its structure was highly affected by the heating rate. The best carbonization heating rate was found at 3oC/min for the fabrication of TCM derived via polymer blending of PI/NCC for CO2/N2 separation.
References
Adewole, J. K., Ahmad, A. L., Ismail, S. & Leo, C. P. (2013). "Current challenges in membrane separation of CO2 from natural gas: A review". International Journal of Greenhouse Gas Control, 17, 46-65.
Bhuwania, N., Labreche, Y., Achoundong, C. S. K., Baltazar, J., Burgess, S. K., Karwa, S., Xu, L., Henderson, C. L., Williams, P. J. & Koros, W. J. (2014). "Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes". Carbon, 76, 417-434.
Briceño, K., Basile, A., Tong, J. & Haraya, K. 2013. 10 - Carbon-based membranes for membrane reactors. In: Basile, A. (ed.) Handbook of Membrane Reactors. Woodhead Publishing.
Centeno, T. A., Vilas, J. L. & Fuertes, A. B. (2004). "Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation". Journal of Membrane Science, 228, 45-54.
Favvas, E. P., Heliopoulos, N. S., Papageorgiou, S. K., Mitropoulos, A. C., Kapantaidakis, G. C. & Kanellopoulos, N. K. (2015). "Helium and hydrogen selective carbon hollow fiber membranes: The effect of pyrolysis isothermal time". Separation and Purification Technology, 142, 176-181.
Hamm, J. B. S., Ambrosi, A., Griebeler, J. G., Marcilio, N. R., Tessaro, I. C. & Pollo, L. D. (2017). "Recent advances in the development of supported carbon membranes for gas separation". International Journal of Hydrogen Energy, 42, 24830-24845.
Hunt, A. J., Sin, E. H. K., Marriott, R. & Clark, J. H. (2010). "Generation, Capture, and Utilization of Industrial Carbon Dioxide". CHEMSUSCHEM, 3, 306-322.
Ismail, N. H., Salleh, W. N. W., Sazali, N. & Ismail, A. F. (2018). "Development and characterization of disk supported carbon membrane prepared by one-step coating-carbonization cycle". Journal of Industrial and Engineering Chemistry, 57, 313-321.
Jones, C. W. & Koros, W. J. (1994). "Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors". Carbon, 32, 1419-1425.
Koresh, J. E. & Soffer, A. (1986). "Mechanism of permeation through molecular-sieve carbon membrane. Part 1.-The effect of adsorption and the dependence on pressure". Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82, 2057-2063.
Mohamed, M. A., W. Salleh, W. N., Jaafar, J., Ismail, A. F., Mutalib, M. A., Sani, N. A. A., M. Asri, S. E. A. & Ong, C. S. (2016). "Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation". Chemical Engineering Journal, 284, 202-215.
Mat, N. C. & Lipscomb, G. G. (2017). "Membrane process optimization for carbon capture". International Journal of Greenhouse Gas Control, 62, 1-12.
Robeson, L. M. 2016. Polymeric Membranes for Gas Separation. Reference Module in Materials Science and Materials Engineering. Elsevier.
Salleh, W. N. W. & Ismail, A. F. (2012). "Effects of carbonization heating rate on CO2 separation of derived carbon membranes". Separation and Purification Technology, 88, 174-183.
Sazali, N., Salleh, W. N. W. & Ismail, A. F. (2017). "Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation". International Journal of Hydrogen Energy, 42, 9952-9957.
Sazali, N., Salleh, W. N. W., Ismail, A. F., Nordin, N. A. H. M., Ismail, N. H., Mohamed, M. A., Aziz, F., Yusof, N. & Jaafar, J. (2018). "Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance". Journal of Natural Gas Science and Engineering, 49, 376-384.
Sridhar, S., Smitha, B. & Aminabhavi, T. M. (2007). "Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes—A Review". Separation & Purification Reviews, 36, 113-174.
Swaidan, R., Ghanem, B. S., Litwiller, E. & Pinnau, I. (2014). "Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1". Journal of Membrane Science, 457, 95-102.
Tanihara, N., Shimazaki, H., Hirayama, Y., Nakanishi, S., Yoshinaga, T. & Kusuki, Y. (1999). "Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber". Journal of Membrane Science, 160, 179-186.
Wang, C., Hu, X., Yu, J., Wei, L. & Huang, Y. (2014). "Intermediate gel coating on macroporous Al2O3 substrate for fabrication of thin carbon membranes". Ceramics International, 40, 10367-10373.
Wang, K., Suda, H. & Haraya, K. (2003). "The characterization of CO2 permeation in a CMSM derived from polyimide". Separation and Purification Technology, 31, 61-69.
Yong, W. F., Lee, Z. K., Chung, T.-S., Weber, M., Staudt, C. & Maletzko, C. (2016). "Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation". CHEMSUSCHEM, 9, 1953-1962.
Yoshimune, M. & Haraya, K. (2013). "CO2/CH4 Mixed Gas Separation Using Carbon Hollow Fiber Membranes". Energy Procedia, 37, 1109-1116.