A robust vector autoregressive model for forecasting economic growth in Malaysia

Authors

  • Azme Khamis Department of Mathematics and Statistics, Faculty of Applied Science and Technology
  • Nur Azreen Abdul Razak Department of Mathematics and Statistics, Faculty of Applied Science and Technology
  • Mohd Asrul Affendi Abdullah Department of Mathematics and Statistics, Faculty of Applied Science and Technology

DOI:

https://doi.org/10.11113/mjfas.v14n3.1021

Keywords:

Forecasting, economic growth, robust, imputation, filtering

Abstract

Economic indicator measures how solid or strong an economy of a country is. Basically, economic growth can be measured by using the economic indicators as they give an account of the quality or shortcoming of an economy. Vector Auto-regressive (VAR) method is commonly useful in forecasting the economic growth involving a bounteous of economic indicators. However, problems arise when its parameters are estimated using least square method which is very sensitive to the outliers existence. Thus, the aim of this study is to propose the best method in dealing with the outliers data so that the forecasting result is not biased. Data used in this study are the economic indicators monthly basis starting from January 1998 to January 2016. Two methods are considered, which are filtering technique via least median square (LMS), least trimmed square (LTS), least quartile difference (LQD) and imputation technique via mean and median. Using the mean absolute percentage error (MAPE) as the forecasting performance measure, this study concludes that Robust VAR with LQD filtering is a more appropriate model compare to others model. 

Author Biographies

Azme Khamis, Department of Mathematics and Statistics, Faculty of Applied Science and Technology

Department of Mathematics and Statistics

Nur Azreen Abdul Razak, Department of Mathematics and Statistics, Faculty of Applied Science and Technology

Department of Mathematics and Statistics,

Mohd Asrul Affendi Abdullah, Department of Mathematics and Statistics, Faculty of Applied Science and Technology

Department of Mathematics and Statistics,

References

Agalega, E., & Antwi, S. 2013. The impact of macroeconomic variables on gross domestic product: Empirical evidence from Ghana. International Business Research, 6(5), 108–116.

Almonem, M. 2015. Robust methods in regression analysis: Comparison and Improvement. Journal of Science, 38–53.

Anscombe, F. J. 1960. Rejection of outliers. Technometrics, 123–147.

Berk, R. A. 1990. A primer on robust regression. In Fox, J. & Long, J. S., (Eds.) Modern Methods of Data Analysis Newbury Park, CA: Sage Publications, 292-323.

Birkes, D. & Dodge, Y. 1993. Alternative Methods of Regression, John Wiley & Sons, Canada, 28-35.

Bruce, L. B., Richard, T. O & Anne B. K. 2005. Forecasting, time series, and regression: An applied approach. Thomson Brooks/Cole, 111-125.

Burke, S., & Wycombe, H. 2012. Robust statistics & non-parametric methods. Statistics and Data Analysis, 19–24.

Cankaya, S., & Abacı, S. H. 2015. A comparative study of some estimation methods in simple linear regression model for different sample sizes in presence of outliers. Journal of Agriculture-Food Science and

Technology, 3(6), 380–386.

Chen, C., & Liu, L.-M. 1993. Forecasting time series with outliers. Journal of Forecasting, 12(1), 13–35.

Fan, L. & Jerome, R. 2017. An empirical comparison of multiple imputation methods for categorical data. Journal of the American Statistician, 162-170.

Fried, R., Bernholt, T., & Gather, U. 2006. Repeated median and hybrid filters. Computational Statistics and Data Analysis, 50(9), 2313–2338.

Fried, R. 2007. On the robust detection of edges in time series. Computational Statistics & Data Analysis, 52, 1063–1074.

Gaspar, S., Cardoso, A., & Alberto, J. 2017. The traditional Energy-growth nexus : A comparison between sustainable development and economic growth approaches. Ecological Indicators, 75, 286–296.

Gupta, R., & Wohar, M. 2017. Forecasting oil and stock returns with a Qual VAR using over 150 years off data. Energy Economics, 62, 181–186.

Hampel, F. R., Ronchetti, E. M., Rousseeuw P. J., and Stahel, W.A. 1986. Robust statistics. The Approach based on Influence Functions, John Wiley and Sons, New York, 35-41.

Khim, V., & Liew, S. (2004). Which lag length selection criteria should we employ? Universiti Putra Malaysia: Economics Bulletin, 3(33), 1–9.

Khodaparasti, R. B., & Moslehi, S. 2014. Application of the Varma Model for sales forecast: Case of Urmia Gray Cement Factory. Timisoara Journal of Economics and Business, 7(1), 89–101.

Koivunen, V. 1995 A robust nonlinear filter for image restoration, IEEE Transactions on Image Processing, 4, 569-578.

Lanne, M., & Nyberg, H. 2015. Nonlinear dynamic interrelationships between real activity and stock returns. Econometric Analysis of Time Series, 85-101.

Nyberg, H. 2017. Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model. Journal of Forecasting, 1–15.

Onwukwe, C., & Nwafor, G. 2014. A multivariate time series modeling of major economic indicators in Nigeria. American Journal of Applied Mathematics and Statistics, 2(6), 376–385.

Petrovska, M., & Naumovski, N. 2016. Forecasting Macedonian business cycle turning points using Qual VAR model. Journal of Central Banking Theory and Practice, 5(3), 1–18.

Reform, G. 2006. Robust filters for intensive care monitoring: Beyond the Running Median. Econometrics, 1–21.

Schumacker, R. E., Monahan, M. P., & Mount, R. E. 2002. A comparison of OLS and Robust Regression using S-Plus. Multiple Linear Regression Viewpoints, 28(2), 10–13.

Yu, Y., Zhu, Y., Li, S., & Wan, D. 2014. Time series outlier detection based on sliding window prediction. Mathematical Problems in Engineering, 2–14.

Downloads

Published

03-09-2018