Aliphatic hydrocarbon biomarkers of Sekar Kurung Gresik crude oil

Authors

  • Dyah Nirmala Institut Teknologi Sepuluh Nopember
  • R.Y.Perry Burhan Institut Teknologi Sepuluh Nopember
  • Suprapto Suprapto Institut Teknologi Sepuluh Nopember
  • Yulfi Zetra Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.11113/mjfas.v15n3.1007

Keywords:

Biomarker, crude oil, aliphatic hydrocarbon

Abstract

Characterization of petroleum biomarker from Sekar Kurung Gresik, was carried out to investigate its organic composition, depositional environment and oil maturity. The oil sample was extracted and fractionated using column chromatography to derive aliphatic hydrocarbon fraction.  The aliphatic hydrocarbon compounds were analyzed using gas chromatography-mass spectrometer (GC-MS). The GC-MS analysis shows that n-alkanes compound (C14-C28), isoprenoid alkanes (iC15 iC16 and iC18-iC20), a bicyclic sesquiterpene, eudesmane, cadinane, hopane, bicadinane, gammacerane and diasterane were observed. The identified compounds show that the crude oil compounds were derived from terrestrial higher plants, the contribution of bacterial activity and the oxic deposition environment (Pr/Ph = 5.3 (<1)). The oil analyzed is a mature oil.


 

Author Biographies

Dyah Nirmala, Institut Teknologi Sepuluh Nopember

Molecular Geochemistry Laboratory, Department of Chemistry

R.Y.Perry Burhan, Institut Teknologi Sepuluh Nopember

Molecular Geochemistry Laboratory, Department of Chemistry

Suprapto Suprapto, Institut Teknologi Sepuluh Nopember

Department of Chemistry

Yulfi Zetra, Institut Teknologi Sepuluh Nopember

Molecular Geochemistry Laboratory, Department of Chemistry

References

Wang, Z., Yang, C., Yang, Z., Brown, C. E., Hollebone, B. P., Stout, S. A. (2016). Petroleum biomarker fingerprinting for oil spill characterization and source identification. In Standard Handbook Oil Spill Environmental Forensics, Stout (2nd Edition), Stout, S. A. and Wang, Z. (Eds.), Academic Press, pp. 131.

Ji-Yang, S., Meckenzie, A. S., Alexander, R., Eglinton, G., Gowar, A. P., Wolff, G. A. and, Maxwell, J. R. (1982). A biological marker investigation of petroleum and shales from the Shengli oilfield. The People’s Republic of China, Chemical Geology, 35, 1-31.

Simoneit B. R. T. (2004). Biomarkers (molecular fossils) as geochemical indicators of life. Advances in Space Research 33, 1255–1261.

Grass, G. V. (1986). Biomarker distributions in aspaltenes and kerogens analysed by flash pyrolysis-gas chromatography- mass spectrometry. Organic Geochemistry. 10,1127-1135.

Hughes, W. B., dan Holba, A. G. (1988). Relationship between crude oil quality and biomarker patterns. Organic Geochemistry, 13, 15-30.

Burhan, R. Y. P dan Zetra, Y, Albrecht, P. (1997). Pengkajian senyawa penanda biologik pada aspal Laut Mati. IPTEK 8, 122-129.

Philp, R. P., Mansuy, L. (1997). Petroleum geochemistry: Concept, application and result. Energy and Fuels, 11(4), 749-760.

Didyk B. M., Simoneit, B. R. T., Brassell, S. C., Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216–222.

Weston, R. J., Philp, R. P., Sheppard, C. M., Woolhouse, A. D. (1989). Sesquisterpanes, diterpanes and other higher terpanes in oils from the Taranaki Basin of New Zealand. Organic Geochemistry, 14, 405-421.

Sonibare, O. O., and Ekweozor, C. M. (2004). Identification of bicyclic sesquiterpanes in oils from the Niger Delta, Nigeria. Jurnal of Applied Sciences 4(3), 508-512.

Wilson, M. E. J, dan Hall, R. (2010). Tectonic influences on Se Asian carbonate systems and their reservoir development. SEPM (Society for Sedimentary Geology), 13–40.

Ourisson, G., Albrecht, P. and Rohmer, M. (1984). The microbial origin of fossil fuels. Scientific American, 251(2), 44-51.

Philp, R. P. (1986). Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry 10, 73-84.

Yuanita, E., Burhan, R. Y. P. dan Wahyudi. (2007). Biomarka hidrokarbon alifatik sedimen Laut Arafura Core MD 05-2969. Akta Kimindo 2, 99-102.

Lu, X., and Zhai, S. (2006). Distributions and sources of organic biomarkers in surface sediments from the Changjiang (Yangtze River) Estuary, China. Continental Shelf Research 26, 1–14.

Richarson, J. S., and Miller, D. E. (1982). Identification of dicyclic and tricyclic hydrocarbons in the saturate fraction of a crude oil by gas chromatography-mass spectrometry. Analytical Chemistry, 54(4), 765-768.

van Aarsen, B. G. K, and Hessels, J. K. C., Abbink, O. A., De Leeuw, J. W. (1992). The occurrence of polycyclic sesqui-, IS-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from southeast Asia. Geochimia et Cosmchimica Acta, 56, 1231-1246.

Philp, R. P. (1985). Fossil fuel biomarker, applications and spectra. Methods in Geochemistry and Geophysics, pp. 196.

Brooks, J. D., Gould, K., Smith, J. W. (1969). Isoprenoid hydrocarbons in coal and petroleum. Nature, 222, 257–259.

Johns, R., Belsky, T., McCarthy, E., Burlingame, A., Haug, P., Schnoes, H., Richter, W., and Calvin, M. (1966). The organic geochemistry of ancient sediments - Part II. Geochimica et Cosmochimica Acta, 30, 1191–1222.

Philp, R. P., Gilbert, T. D., and Friedrich, J. (1981). Bicyclic sesquiterpenoids and diterpenoids in Australian crude oils. Geochimica et Cosmochimica Acta, 45(7), 1173-1180.

Alexander, R., Kagi, R. I., Noble, R., and Volkman, J. K. (1984). Identification of some bicyclic alkanes in petroleum. Organic Geochemistry, 6, 63–72.

Eiserbeck, C., Nelson, R. K., Grice, K., Curiale, J., Reddy, C. M. (2012). Comparison of GC-MS, GC-MRM-MS and GCxGC to characterize higher plant biomarkers in tertiary oils and rock extracts. Geochimica et Cosmochimica, 87, 299-322.

Morley, R. (2000). Origin and evolution of tropical rain forest. New York, Wiley-Blavkwell, pp. 61.

van Aarsen, B. G. K., Cox, H. C., Hoogendoorn, P., DeLeeuw, J. W. (1990). A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia. Geochimica et Cosmochimica Acta 54, 3021–3031.

Widodo, S., Bechtel, A., Anggayana, K., Püttmann, W. (2009). Reconstruction of floral changes during deposition of the Miocene Embalut coal from Kutai Basin, Mahakam Delta, East Kalimantan, Indonesia by use of aromatic hydrocarbon composition and stable carbon isotope ratios of organic matter. Organic Geochemistry, 40, 206-218.

Ourisson, G., Albrecth, P., Rohmer, M. (1984). The hopanoids – The palaeochemistry and biochemistry of a group natural product. Pure and Applied Chemistry, 51, 709-729.

Waples, D. W., and, Machihara, T. (1991). Application of steranes and triterpanes in petroleum exploration. Bulletin of Canadian Petroleum Geology, 38(3), 357-380.

Peters, K. E., and, Moldowan, S. M. (1993). The biomarkers guide interprenting molecular fossil in petroleum and ancient sediment. Prentice Hall Inc., New Jersey, pp.160

Armanios, C., Robert, A., Sosrowidjojo, I. B., Kagi, R. I. (1995). Identification of bicadinanesin Jurassic organic matter from the Eromanga Basin, Australia. Organic Geochemistry, 23, 837-843.

Bendoraitis, J. G. (1973). Hydrocarbons of biogenic originin petroleum-aromatic triterpenes and bicyclic sesquiterpenes. In: Tissot, B., and Bienner, F. (Eds.), Adv. In Organic Geochemistry, Editions Technip, Paris, pp. 209-224

Venkatesan, M. I. (1989). Tetrahymanol: Its widespread occurrence and geochemical significance. Geochimica et Cosmochimica Acta, 53(11), 3095-3101.

Burhan R. Y. P. (2002). Biomarka panduan bagi peneliti bumi, ITS Press, pp. 28-38.

Erbacher, J., Mosher, D. C., M. J. (2004). Molecular biogeochemistry of cretaceous black shales from the Demerara rise: Preliminary shipboard results from sites 1257 and 1258, ODP leg 207, Proceedings of the Ocean Drilling Program 207, 1-22.

Bakar, N. A., Tay, K. S., Omar, N. Y. M. J., Abas, M. R. B., Simoneit, B. R. T. (2011). The geochemistry of aliphatic and polar organic tracers in sediments from Lake Bera, Malaysia. Applied Geochemistry, 26, 1433–1445.

Sinninghe Damsté, J. S., Rijpstra, W. I. C., Schouten, S., Fuerst, J. A., Jetten, M. S. M., and, Strous, M. (2004). The occurrence of hopanoids in planctomycetes: Implications for the sedimentary biomarker record. Organic Geochemistry, 35, 561–566.

Tissot, B. P., and, Walte, D. H. (1984). Petroleum formation and occurence. Spinger, Verlag: Berlin, pp. 100.

Zhang, Z., Zhao, M., Yang, X., Wang, S. (2004). A hydrocarbon biomarker record for the last 40 Kyr of plant input to Lake Heqing, soutweatern China. Organic Geochemistry, 3, 595-613.

Zinniker, D. A., and Moldowan, J. M. (2005). New insight into molecular fossil: The fate of terpenoids and the origin of gem-dialkylalkanes in the geological environment. Stanford University.

Schefub, E., Ratmeyer, V., Stuut, J. -B., Fred Jansen, J. H., Sinninghe Damste, J. S. (2003). Carbon isotop analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic, Geochimica et Cosmochimica Acta, 67(10), 1757-1767.

Hsu, C. S., Walter, C. C., Isaksen, G. H., Schaps, M. E., Peter, K. E. (2003). Biomarker analysis in petroleum exploration, Analytical Advances for Hydrocarbon Research, pp. 223-225.

Hakimi, M. H., Ahmed, A. F., Abdullah, W. H. (2016). Organic geochemical and petrographic characteristics of the miocene salif organic-rich shales in the Tihama Basin, Red Sea of Yemen; Implications for paleoenviromental conditions and oil - Generation potential. International Journal of Coal Geology, 154-155, 193-204.

Sinninghe Damste, J. S., Hollander, D., Kohnen, M. E. L., de Leeuw, J. W. (1995). Early diagenesis of bacteriohopanetetrol derivates; Formation of fosisil homohopanoids, Geochimica et Cosmochimica Acta, 59(24), 5141-5157.

Herod, A. A., Hellenbrand, R., Xu, B., Zhang, S., Kandiyoti, R., (1995), Alkanes and solvent dimers in successive extract fractions released from coal during liquefaction in a flowing solvent reactor, Fuel, 74(12), 1739-1752.

Downloads

Published

25-06-2019