Numerical modelling of blood cells distribution in flow through cerebral artery aneurysm

Authors

  • Syazatul Aniza Arshad Universiti Teknologi Petronas
  • Osama Sabir Universiti Teknologi Petronas
  • Joanne Huang Lehigh University
  • Kevin Ly Lehigh University
  • Angela Nguyen Lehigh University
  • Tuan Mohammad Yusoff Shah Tuan Ya Universiti Teknologi PETRONAS
  • Sobri Muda Universiti Putra Malaysia
  • Adli Azam Mohammad Razi Universiti Teknologi MARA
  • Anis Suhaila Shuib Taylor's University

DOI:

https://doi.org/10.11113/mjfas.v14n1.915

Keywords:

Aneurysm, CFD, wall shear stress, blood cells

Abstract

Recent aneurysm studies have focused on the correlation between different parameters and rupture risk; however, there have been conflicting findings. Computational fluid dynamics (CFD) allows for better visualization but idealized aneurysm models may neglect important variables such as aneurysm shape and blood flow conditions. In this paper, one case of an aneurysm was studied with CFD using a non-Newtonian Power Law Model to investigate the correlation between wall shear stress and blood cells distribution. Results show that velocity of blood flow decreased as it entered the aneurysm and the neck of the aneurysm experienced a greater magnitude of wall shear stress than the remainder of the cerebral artery. Besides, the blood cells generally begin at low velocities and increase after the first curve of the artery. Findings and further studies with larger cases of patients will improve treatment and prevention of aneurysm ruptures.

Author Biographies

Syazatul Aniza Arshad, Universiti Teknologi Petronas

department mechanical engineering

Osama Sabir, Universiti Teknologi Petronas

department mechanical engineering

Joanne Huang, Lehigh University

Departmentof Chemical and Biomolecular Engineering

Kevin Ly, Lehigh University

Department of Bioengineering

Angela Nguyen, Lehigh University

Departmentof Chemical and Biomolecular Engineering

Tuan Mohammad Yusoff Shah Tuan Ya, Universiti Teknologi PETRONAS

Mechanical Enginering Department

Sobri Muda, Universiti Putra Malaysia

Deparment of Radiologi/Neuroradiologi & Neurointervensi

Adli Azam Mohammad Razi, Universiti Teknologi MARA

Cardiovascular and Thoracic Surgery Unit, Surgical Science Cluster, Faculty of Medicine

Anis Suhaila Shuib, Taylor's University

Deparment of Chemical

References

Can, A., Du, R. 2016. Association of hemodynamic factors with intracranial aneurysm formation and rupture, Neurosurgery, 78(4), 510-520.

Cebral, J., Castro, M., Appanaboyina, S., Putman, C., Millan, D., Frangi, A. 2005. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE Transactions on Medical Imaging, 24(4), 457-467.

Cebral, J. R., Castro, M. A., Appanaboyina, S., Putman, C. M., Millan, D., Frangi, A. F. 2005. [62]Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamies technique and sensitivity. IEEE Transactions on Medical Imaging, 24(4), 457–467.

Cebral, J. R., Castro, M. a., Burgess, J. E., Pergolizzi, R. S., Sheridan, M. J., Putman, C. M. (2005). Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. American Journal of Neuroradiology, 26(10), 2550–2559.

Dhar, S., Tremmel, M., Mocco, J., Kim, M., Yamamoto, J., Siddiqui, A., Hopkins, L., Meng, H. 2008. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery, 63(2), 185-197.

Goubergrits, L., Schaller, J., Kertzscher, U., van den Bruck, N., Poethkow, K., Petz, C., Hege, H., Spuler, A. 2011. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. Journal of the Royal Society Interface, 9(69), 677-688.

Goubergrits, L., Schaller, J., Kertzscher, U., van den Bruck, N., Poethkow, K., Petz, C., … Spuler, A. (2012). Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. Journal of The Royal Society Interface, 9(69), 677–688.

Jiang, Y., Lan, Q., Wang, Q., Lu, H., Ge, F., Wang, Y. 2014. Correlation between the rupture risk and 3D geometric parameters of saccular intracranial aneurysms. Cell Biochemistry and Biophysics, 70(2), 1417-1420.

Munarriz, P. M., Gómez, P. A., Paredes, I., Castaño-Leon, A. M., Cepeda, S., Lagares, A. (2016). Basic Principles of Hemodynamics and Cerebral Aneurysms. World Neurosurgery, 88, 311–319.

Munarriz, P. M., Gómez, P. A., Paredes, I., Castaño-Leon, A. M., Cepeda, S. Lagares, A. 2016. Basic principles of hemodynamics and cerebral aneurysms. World Neurosurgery, 88, 311-319.

Nur, H., Hayati, F., Hamdan, H. 2007. On the location of different titanium sites in Ti-OMS-2 and their catalytic role in oxidation of styrene. Catalysis Communications, 8, 2007-2011.

Nur, H., Guan, L. C., Endud, S., Hamdan, H. 2004. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Materials Letters, 58(12-13), 1971-1974.

Papaioannou, T. G., Stefanadis, C. (2005). Vascular wall shear stress: basic principles and methods. Hellenic Journal of Cardiology, 46(1), 9–15.

Xiang, J., Natarajan, S., Tremmel, M., Ma, D., Mocco, J., Hopkins, L., Siddiqui, A., Levy, E., Meng, H. 2010. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke, 42(1), 144-152.

Xiang, J., Natarajan, S. K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L. N., … Meng, H. (2011). Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke, 42(1), 144–152.

Downloads

Published

29-03-2018