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Abstract 
 
Nitrite ion (NO2

-) is a toxic inorganic contaminant, which is widely used in industry and agriculture as 
a food preservative and a fertilizing agent. One of the methods to reduce the toxicity of the NO2

- is by 
oxidizing it into less hazardous compounds, such as nitrate ion (NO3

-). In this study, we 
demonstrated that a simple and green photocatalytic process can be employed to oxidize the NO2

- to 
NO3

- over a metal free-carbon nitride photocatalyst under ultraviolet (UV) light irradiation. The carbon 
nitride was synthesized via pyrolysis of urea precursor by a thermal polymerization process at 823 K 
for 4 hours. The prepared carbon nitride was then characterized by using X-ray diffractometer (XRD), 
field emission scanning electron microscope (FESEM), diffuse reflectance UV-visible (DR UV-vis), 
fluorescence, and Fourier transform infrared (FTIR) spectrophotometers, as well as nitrogen  
adsorption-desorption isotherm analyzer. All the characterization results supported the successful 
synthesis of the carbon nitride. The carbon nitride was then used as the photocatalyst for oxidation of 
NO2

- to NO3
- under UV light irradiation for 3 h. The decrease of the NO2

- and the formation of the 
NO3

- were analyzed by using a high performance liquid chromatography (HPLC) equipped with 
Hypersil GoldTM PFP column. The mobile phase used was a mixture of methanol (MeOH) and water 
(H2O) with the ratio of MeOH:H2O was 30:70. The addition of orthophosphoric acid was required to 
set the pH at 2.5. The flow rate was fixed at 0.8 ml min-1 and the monitored wavelength was 220 nm. 
It was revealed that carbon nitride could oxidize NO2

- to NO3
- with a moderate conversion of 15%. 

Fluorescence quenching showed that there were good interactions between the emission sites of 
carbon nitride and the NO2

- molecules. The good interactions would be one driving force for the 
carbon nitride to act as a good photocatalyst to oxidize the NO2

- to NO3
-. The oxidation pathway by 

the photogenerated species was also proposed. 
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INTRODUCTION 

Nitrite (NO2
-) is a common pollutant in the environment as it is 

largely employed as a food preservative and a fertilizing agent. This 

has caused the increase in the contamination of the water resource for 

human consumption (Wang et al., 2017). The NO2
- can be harmful to 

human health when it reacts with secondary amines and amides in the 

gastrointestinal tract since it may form carcinogenic N-nitrosamine, 

which can cause stomach cancer (Kodamatani et al., 2009; Santarelli 

et al., 2008). Other than that, NO2
- also can interact with blood 

pigments to produce methemoglobinemia or baby blue syndrome, 

which can cause blood disorder and breathing difficulties in human 

(Bagheri et al., 2017; Wang et al., 2016). In addition, the World 

Health Organization (WHO) has set the maximum concentration level 

of the NO2
- in drinking water to 1 mg/L (WHO, 2011). Therefore, the 

conversion of NO2
- to the less hazardous compound is regarded to be 

very significant from the human health and environmental point of 

view. The development of green methods to reduce the existence of 

NO2
- in drinking water remains an important challenge to be achieved. 

Among many different approaches for removal of pollutant from 

water, photocatalysis and electrochemical oxidation are considered as 

the most efficient methods for degradation of pollutants in water 

(Quiroz et al., 2011). However, the electrochemical method suffers 

from the high cost of electrodes, the demand for energy, and 

formation of by-product (Woisetschläger et al., 2013). In contrast, 

photocatalytic degradation of organic pollutant has attracted a great 

interest due to the low cost of available photocatalysts, the possibility 

to utilize renewable light energy, and the ability of the photocatalyst 

to catalyze the total oxidation of organic pollutants, which overall 

result in the environmental protection. It has been found that the 

organic matter and contaminations in water can be completely 

mineralized by light irradiation using UV light, visible light or 

sunlight in the presence of suitable semiconductor photocatalyst. 

While the oxidation of NO2
- to NO3

- can be carried out by oxygen in 

water at room temperature, the oxidation rate of the oxidation NO2
- is 

very slow. In the presence of light and semiconductor acting as a 

photocatalyst, the oxidation of the NO2
- can be speeded up. In 
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addition, by using this method, NO2
- can be converted to NO3

-, which 

is a less hazardous compound (Navío et al., 1998). 

In this work, carbon nitride was used as a metal-free photocatalyst 

for oxidation of NO2
- to NO3

-. Carbon nitride is a polymeric 

semiconductor having a similar structure to graphene, but different 

properties. Owing to its unique physical and chemical properties, 

carbon nitride has been widely used as an active photocatalyst for 

degradation and oxidation of organic pollutants (Lee et al., 2012; Yan 

et al., 2009) as well as water splitting reactions (Wang et al., 2009; 

Zhang et al., 2012). Carbon nitride and its composites have been also 

investigated as a potential fluorescence sensor for several nitrogen-

containing compounds, such as N-Nitrosopyrrolidone (Sam et al., 

2012), NO3
- (Alim et al., 2015; Jasman et al., 2017a), and NO2

-

(Jasman et al., 2017b). Such molecular interactions on the carbon 

nitride might lead the carbon nitride to act as a good photocatalyst for 

the nitrogen-containing compound. This study highlighted the first use 

of carbon nitride to photocatalytically oxidize the NO2
- to NO3

-. The 

characterizations of the prepared carbon nitride and the fluorescence 

quenching in the presence of NO2
- were discussed and the pathway of 

photogenerated hole and electron was proposed. 

EXPERIMENTAL 

Materials 
All chemicals used throughout this study were purchased and used 

without any treatments. The carbon nitride was synthesized by using 

urea (CO(NH2)2) as the precursor, which was purchased from Sigma-

Aldrich (99%). The sodium nitrite (NaNO2) used as the source of 

NO2
- was supplied from Sigma-Aldrich (97%). Diammonium oxalate 

monohydrate ((NH4)2C2O4.H2O) purchased from Merck (99%) was 

used as a hole scavenger used in the photocatalytic oxidation process. 

Synthesis of Carbon Nitride 
The carbon nitride was synthesized in a similar way to the 

reported synthesis of bulk carbon nitride (Lee et al., 2012). A certain 

amount of urea was calcined at 823 K for 4 hours with the heating rate 

of 2.2 K min-1 in a ceramic crucible with a closed cover via thermal 

polymerization technique. The resultant yellow colored powder was 

ground and collected as the carbon nitride sample.  

Characterizations of Carbon Nitride 
XRD pattern of the carbon nitride was obtained from an X-ray 

diffractometer (Bruker D8 Advance), using Cu Kα irradiation with λ

of 1.5406 Å and a scan rate of 0.05° s-1. The morphology of carbon 

nitride was observed by using FESEM on a JEOL JSM-6701F 

microscope operating at 15 kV, recorded at a magnification of 10,000 

times. The carbon nitride sample was coated with Pt prior to the 

measurement. FTIR spectrum was recorded at room temperature by 

using a Nicolet iS50 spectrophotometer by mixing the carbon nitride 

sample with KBr to form a pellet. Nitrogen adsorption-desorption 

isotherm was measured at 77 K on a Quantachrome NOVAtouch 

LX4. Prior to the measurement, the carbon nitride was degassed for 2 

hours at 393 K. The absorption spectrum of carbon nitride at UV and 

visible region was measured by a Shimadzu UV-2600 in the range of 

250-800 nm, where barium sulfate was used as the reference. The 

excitation and emission spectra of the carbon nitride were obtained by 

measurements at room temperature on a JASCO FP-8500 

fluorescence spectrophotometer.  

Photocatalytic Activity Test 
Photocatalytic activity of carbon nitride was evaluated for the 

oxidation of NO2
- under UV light irradiation. The stock solution of 

NO2
- (8 ppm) was prepared by diluting 8 mg of sodium nitrite in 1 L 

distilled water. Before the reaction, 0.05 g of carbon nitride was 

dispersed in 50 mL NO2
- solution and stirred under dark conditions 

for 1 h to establish the adsorption-desorption equilibrium. 

Diammonium oxalate monohydrate (0.002 g) was introduced into the 

mixture as the hole scavenger and the mixture was then irradiated for 

3 h by a 200 W Xe-Hg lamp equipped with an infrared cut-off filter. 

The light intensity was measured to be 6 mW cm-2. The mixture was 

then filtered through a membrane filter (0.22 µM). The NO2
- and NO3

-

peaks were analyzed by using a high performance liquid 

chromatography (HPLC) equipped with Hypersil GoldTM PFP 

column. The mobile phase used was MeOH:H2O (30:70) with the 

addition of orthophosphoric acid to set the pH at 2.5. This condition 

was essential to get good separation between the peaks of NO3
- and 

NO2
-. The flow rate was fixed at 0.8 ml min-1 and the monitored 

wavelength was 220 nm. 

RESULTS AND DISCUSSION 
 
Characterizations 

Fig. 1 shows the XRD pattern of the prepared carbon nitride. 

From the diffraction pattern, two obvious peaks were observed at 2

of 13.10 and 27.30°. The broad peak at 2 of 13.10° corresponded to 

(100) plane with d-spacing of 0.64 nm, showing the in-planar 

repeating units and the distance between the nitride pores. On the 

other hand, the stronger diffraction peak at 2 of 27.30° could be 

assigned as the (002) plane with d-spacing of 0.35 nm, which was 

described as the distance between the layers of the graphitic material. 

These diffraction peaks are in good agreement with previous reports 

on graphitic carbon nitride prepared by urea precursor (Alim et al., 

2015; Lee et al., 2012; Liu et al., 2011; Jasman et al., 2017a; Jasman 

et al., 2017b; Zhang et al., 2012). Fig. 1 also displays the FESEM 

image of the carbon nitride. The FESEM image showed that the 

carbon nitride composed of layers with uneven tremella-like structure. 

 
 

Fig. 1 XRD pattern and FESEM image (inset) of carbon nitride. 

As observed in Fig. 2, carbon nitride has three important 

absorption peaks, which were observed at around 277, 315 and 369 

nm, in good agreement with the reported literature (Alim et al., 2015, 

Jasman et al., 2017a; Jasman et al., 2017b). The absorption peaks at 

277 and 369 nm were more likely attributed from the π-π* and n-π*

electronic transitions of conjugated aromatic s-triazine ring system, 

while the absorption peak at 315 nm could be assigned to the presence 

of C=O groups due to the less condensation of urea precursor during 

the polymerization process (Liu et al., 2011).  

The bandgap energy (Eg) of the carbon nitride could be calculated 

by using the Tauc plot. The Tauc equation was plotted to obtain a 

graph of (h)n versus photon energy (h), where is absorption 

coefficient, and n was fixed to 0.5 for the indirect allowed transition. 

The  value could be obtained from the DR UV-vis spectrum since 

the Kubelka-Munk function is directly proportional to the . The 

bandgap energy value was obtained by extrapolating the linear part at 

the energy axis. As shown in the inset of Fig. 2, the bandgap energy of

the carbon nitride could be estimated to be ca. 2.8 eV, close to the

reported bandgap energy value (Zhang et al., 2012).  
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Fig. 2 DR UV-vis spectrum and Tauc plot (inset) of carbon nitride. 
 

Fig. 3 shows the excitation and emission spectra of carbon nitride 

measured by fluorescence spectrophotometer. Similar to the optical 

properties of carbon nitride shown in Fig. 2, the excitation peaks were 

also observed at 277, 315, and 369 nm. The excitations at 277 and 369 

nm were related to the C=N (π-π*) and C-N (n-π*) electronic 

transitions in the conjugated polymer units and covalent nitrogen in 

the s-triazine ring, while the excitation at 315 nm was due to the 

presence of C=O moiety (Alim et al., 2015, Jasman et al., 2017a; 

Jasman et al., 2017b; Zhang et al., 2012). All three excitation peaks 

exhibited one emission peak at a wavelength of ca. 450 nm. The 

intensity of the emission peak excited at different wavelengths was 

found to be slightly different from each other.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Excitation and emission spectra of carbon nitride. 

As shown in Fig. 4, the carbon nitride showed vibration bands in 

the region of 3300-3400 cm-1, which referred to the primary and 

secondary amines. These bands could be also the result of overlapping 

bands from the incomplete condensation process of v(O-H) group. As 

for the stretching modes of v(C=O) and v(C-N) heterocycles, they 

were observed around 1200-1700 cm-1. The stretching band at 809 

cm-1 showed the presence of heterocyclic tri-s-azine ring (C6H7), 

which is the characteristic of the carbon nitride. These observed 

vibration bands agreed well with the reported ones observed on the 

carbon nitride prepared by urea precursor (Alim et al., 2015; Liu et 

al., 2011; Jasman et al., 2017a; Jasman et al., 2017b), suggesting the 

successful formation of carbon nitride. 

 

Fig. 4 FTIR spectrum of carbon nitride. 
 

Fig. 5 depicts the nitrogen adsorption-desorption isotherm of the 

carbon nitride. The isotherm showed that the carbon nitride has the 

characteristic of type IV isotherm with a distinct H3 hysteresis loop at 

the relative pressure (P/Po) with the range of 0.5−1.0. The isotherm 

suggested that the carbon nitride has mesoporosity. The Barrett-

Joyner-Halenda (BJH) pore-size distribution is shown as the inset of 

Fig. 5. Based on the BJH results, the carbon nitride was shown to have 

a porosity which size was in the range of 2–50 nm, where the  largest 

distribution of porosity has a pore size of ca. 3.8 nm. It has been 

reported that the formation of mesoporosity in carbon nitride prepared 

by urea precursor was related to the released gas bubbles produced 

from the pyrolysis of urea during the polymerization treatment (Zhang 

et al., 2012). The Brunauer-Emmet-Teller (BET) specific surface area 

of the carbon nitride was determined to be 90 m2g-1. The high surface 

area of the carbon nitride would be beneficial as it would provide a 

large number of exposed active sites to the reactant and thus, expected 

to have high photocatalytic activity.  
 

Fig. 5 Nitrogen adsorption-desorption isotherm and BJH pore size 
distribution (inset) of carbon nitride. 

Interactions with NO2
- 

Fluorescence quenching study has been carried out in order to 

investigate the interaction between the emission sites of the carbon 

nitride and the NO2
- molecules. The fluorescence quenching can be 

measured quantitatively using the Stern-Volmer equation as shown in 

Eq. (1) below. 

I0 / I =  Ksv [Q] + 1                                                                            (1) 
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The I and I0 show the fluorescence emission intensity with and 

without the quencher, respectively, [Q] is the quencher concentration, 

and Ksv represents the Stern-Volmer constant. In this study, the 

quencher was NO2
- and the amount of NO2

- was investigated in the 

range of 5–40 mol. 

As displayed in Fig. 6, the emission intensity of carbon nitride 

was quenched with the addition of NO2
-. It was obvious that 

regardless the excitation wavelength, all the emission sites were 

quenched by the NO2
-. The higher amount of the NO2

- led to the more 

quenched emission intensity, suggesting that there were interactions  

between the added NO2
- and all the emission sites. 

Fig. 6 Interactions between the added NO2
- and emission sites when 

excited at (a) 277, (b) 315, and (c) 369 nm. 

The quenching efficiency of the carbon nitride towards the NO2
-

can be determined from the Ksv values obtained from the slopes of 

Stern-Volmer plots according to the Eq. (1) and shown in Fig. 7. The 

linear lines observed from the Stern-Volmer plots suggested that the 

decrease of the emission intensity was a function of NO2
- 

concentration. As aforementioned, carbon nitride has three excitation 

wavelengths at 277, 315 and 369 nm. The Ksv values of carbon nitride 

monitored at 277, 315 and 369 nm, which corresponded to C=N, 

C=O, and C-N groups, were determined to be 6.9 × 10-3, 6.37 × 10-3, 

and 5.39 × 10-3 mol-1, respectively. Based on this result, the C=N sites 

were confirmed to give the strongest interactions with the NO2
-, 

followed by C=O and C-N sites. 

Photocatalytic Activity   
The photocatalytic activity of the carbon nitride was evaluated for 

oxidation of NO2
- under UV light irradiation for 3 h. Prior to the 

reaction, the mixture of  NO2
- aqueous solution and the carbon nitride 

was stirred in the dark condition for 1 h to reach the adsorption 

equilibrium. The adsorption test for 4 h revealed that no formation of 

NO3
- was observed, suggesting that the oxidation of NO2

- to NO3
-

could not occur without the UV light.  

In this study, the photocatalytic reaction of NO2
- in aqueous 

solution was examined in the absence and presence of diammonium 

oxalate monohydrate as the hole scavenger under UV light irradiation. 

Unfortunately, no conversion of NO2
- to NO3

- could be observed 

when the reaction was carried out without the presence of the hole 

scavenger. In contrast, in the presence of diammonium oxalate 

monohydrate, the NO2
- could be oxidized to the NO3

-. As depicted in 

Fig. 8, only one NO2
- peak was observed at the retention time of ca. 5 

min prior to the photocatalytic reaction. However, after the reaction, 

two peaks could be detected at the retention time of ca. 3 and 5 min 

due to the presence of NO3
- and NO2

-, respectively. The good 

separation of these peaks suggested that the current method could be 

employed. The percentage oxidation of NO2
- was determined to be 

15%, which was calculated from Eq. (2) below. 

Percentage oxidation of NO2
- (%) = (A0 – At)/A0 × 100 %                (2), 

where A0 is the initial amount of NO2
- in the solution after adsorption 

under the dark condition, while At is the amount of NO2
- in the 

solution after 3 h-reaction. 

Fig. 7 Stern-Volmer plots of carbon nitride where the added NO2
-

amount was in the range of 5 to 40 mol. 

Fig. 8 HPLC chromatograms before (full line) and after reaction (dash 
line) for 3 h over the carbon nitride photocatalyst in the presence of 
diammonium oxalate monohydrate as the hole scavenger. 
   

The mechanism for oxidation of NO2
- to NO3

- is proposed in Fig. 

9. When the carbon nitride was irradiated by UV light, the electron-

hole pairs would be created on the surface of carbon nitride. Electrons 

would be generated at the conduction band (CB), while holes would 

be generated at the valence bands (VB) of the carbon nitride. Since 

the oxidation reaction only occurred in the presence of hole 

scavenger, the holes shall be consumed to proceed the reaction. In 

other words, it could be suggested that the holes would not act as the 

active sites to oxidize the NO2
-. Therefore, the possible pathway to 

oxidize the NO2
- would be initiated by the photogenerated electrons. 

The electrons could react with oxygen to form superoxide radicals that 

able to oxidize the NO2
-. In addition, the two-electron reduction of 

superoxide radicals could create hydroxyl radicals (Nosaka & Nosaka, 

2012), which could further oxidize the NO2
-. Moreover, it has been 

reported that in the presence of hydrogen peroxide, the NO2
- could be 

easily converted to the NO3
- (Kominami et al., 2014).       

CONCLUSION 

Carbon nitride was successfully prepared by thermal 

polymerization of urea as supported by various characterizations of

XRD, FESEM, DR UV-vis, fluorescence, and FTIR spectroscopies, 
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 and nitrogen adsorption-desorption analyzer. It was demonstrated by 

fluorescence quenching study that the carbon nitride showed good 

interactions with the NO2
-, which led to the good activity for 

photocatalytic oxidation of NO2
- to NO3

-. Under UV light irradiation 

for 3 h, carbon nitride exhibited photocatalytic activity with 

percentage degradation of NO2
- to NO3

- was 15%. Since the reaction 

only occurred in the presence of the hole scavenger, it was proposed 

that the photogenerated electrons would play important roles as the 

active species. The electrons could react with oxygen to form 

superoxide radicals, which further reduced to hydrogen peroxide and 

hydroxyl radicals, which would oxidize NO2
- to NO3

-.   

Fig. 9 Proposed mechanism of photocatalytic oxidation of NO2
- over 

carbon nitride 
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