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ABSTRACT 

The aim of this study was to investigate vibration analysis and independent component analysis (ICA) to assess the density of multiple materials making 
up a single structure. Density is important as it reveals information about physical properties of materials. The density of a single material can be 
determined from the relationship between its mass and volume. However, when a structure consists of multiple materials, identification of their 
individual densities from the structure is complicated. Vibration analysis is a technique that reveals information about an object’s physical properties 
such as its density. The investigation was carried out using a plastic test tube filled separately with three liquids of known densities; water, Chloroform 
and Methanol. Vibration was inducted into the tube, through an electronic system that produced a single impact at a predefined location on the tube. The 
resulting vibration signals were recorded using two vibration sensors placed on the tube. A signal source separation technique called ICA was used to 
obtain the vibration effects of the liquid and the tube. The power spectral densities (PSD) of  ICA extracted vibration signals were examined. The 
frequency of the largest peak in the PSD was related to the liquid’s density under test. The study indicated that vibration analysis  may be effective in 
assessing materials’ densities in a structure that contains multiple materials, however a larger study is needed to explore the findings.  

| Density assessment | Vibration analysis | Independent component analysis | 
® 2013 Ibnu Sina Institute. All rights reserved. 
        http://dx.doi.org/10.11113/mjfas.v9n3.96

1. INTRODUCTION 

The density of materials is an important feature of 
their physical properties. It is a measure of the amount of a 
material’s mass in relation to its volume. Density is often 
used to identify and classify substances. It is usually 
expressed in grams per cubic centimetres (g/cm3). The 
density of an object that is made from a single material can 
easily be determined. However, some objects such as bone 
have a complex structure making their density analysis 
complicated.  

Materials with different densities vibrate differently 
when they are subjected to an applied force. The form of 
force inducing the vibration can be different. It can be an 
impulse, where the applied force has a very short duration. 
An example of this is when a hammer impacts an object. 
Alternatively, it can be continuous in nature, for example 
when a vibration motor is attached to the object under test. 
In the former, the vibration of object decays with time and 
the decay rate is an important feature of the object’s 
physical properties. In the latter, the vibration of the object 
will be on-going and the vibration of the system that 
induces the vibration and the vibration of the object under 
test interact, creating a more complex overall vibration 
signal. 

Vibration analysis has been used extensively to 
better understand the physical behaviour of materials and to 
detect defects in their structures [1-3]. 

An issue that complicates vibration analysis is that 
when the object consists of multiple elements of different 
densities, these elements vibrate differently and thus the 
vibration signals recorded are a mixture of vibrations from 
each element in the structure. This requires that the 
vibration signal attributed to each element be separated 
from the recorded signal mixtures.  

Signal source separation is a technique that is used to 
explore signal components in mixtures emanating from 
independent sources. A well-known signal source 
separation technique is independent component analysis 
(ICA). ICA is an extension of the Principal Component 
Analysis (PCA)that not only de-correlates, but it can also 
deal with the higher-order statistical dependencies [4, 5]. 
Bell and Sejnowski [6] proposed an information-theoretic 
based ICA algorithm that uses an unsupervised learning 
rule. It finds a linear transformation within the data to make 
the separated signal components as statistically 
'independent' as possible. The technique does not need a 
priori knowledge of the physical location or the 
configuration of the sources, and unlike PCA, it does not 
require the distribution of the signal sources to be 
orthogonal. However for it to function correctly, the signal 
sources must be statistically independent and the 

Malaysian Journal of Fundamental and Applied Sciences Vol.9, No.3 (2013) 123-128

*Corresponding author. E-mail: R.Saatchi@shu.ac.uk 

http://mjfas.ibnusina.utm.my/
http://www.foxitsoftware.com/shopping


Razagi et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.3 (2013) 123-128 

 
| 124 | 

distribution of not more than one source should be 
Gaussian. 
 The use of signal source separation in analysing 
vibration signals has been investigated in a number of 
studies. ICA has been applied to gear vibration 
measurements [7]. It has been shown that the individual 
gear and pinion vibrations cannot be separated using the 
blind separation algorithm, but the learning curve of the 
updated parameter can be used to detect impulsive and 
random changes in the data. ICA has been used to separate 
vibration signals into contributions of periodic, random 
stationary and random non-stationary sources [8]. The 
relation between the vibration modes of mechanical systems 
and their modes computed through ICA were investigated 
[9]. For free and random vibrations of weakly damped 
systems, a one-to-one relationship between the vibration 
modes and the ICA modes was demonstrated.  
 In a study, signal source separation was used to 
detect the influence of one motor from another placed on a 
work bench [10]. Temporal signals from accelerometers or 
microphones were recorded. The results indicated that the 
approach could be successfully applied to vibration 
analysis. 

The outline of this paper is as follows. A brief 
introduction to ICA is provided in section 2; the 
experimental methodology used in this study is explained in 
section 3; results are presented in Section 4 followed by our 
conclusions in section 5.  

 
 

2. INDEPENDENT COMPONENT ANALYSIS  
 

The concept of ICA for a situation involving two 
signal sources S= s
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to be obtained by,

  
 U = W X    (2) 
 

The ICA algorithm proposed by Bell and Sejnowski 
[6] was used in this study. This algorithm is performed by 
the following steps. 

i) The unmixing matrix W is initialised to an identity 
matrix. 

ii) The signal sources are estimated and then they are 
transformed by a non-linear transfer function. For a 
sigmoidal transfer function (used in this study), the 
resulting signals (Y) are expressed as, 

      
 

0 U
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ω+−+
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 where oω is a vector of bias weights and it is 
initialised to a zero vector.  

iii) The non-linearly transformed signals (Y) are 
processed by a learning rule that maximises their joint 
entropy (i.e. it minimises their mutual information). 
This is achieved by changing the weight matrix by the 
amount ∆W , where 
 

 [ ] T1T )2(1 xyWW −+=∆
−      (4)    

 
 and the symbols  T  and  -1  represent matrix transpose 

and inversion respectively. The change in the bias 
weight is expressed by, 

  
 y1ωo 2−=∆   .  (5) 
 
iv) The ICA algorithm is trained by repeating steps (ii) 

and (iii). After each iteration, the unmixing matrix W 
is updated by ∆W until convergence is achieved. 
The convergence is achieved when the rate of change 
falls below a predefined small value (for example 1.0
×10-6). The rate of change is computed by squaring 
the difference between corresponding elements of the 
unmixing matrix before and after each iteration and 
then summing the values.  

 
 
 

 
 

 
                                  Fig. 1. A block diagram of ICA operation 
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3. METHOLOGY 
 

An experiment was devised to investigate the 
effectiveness of vibration analysis and ICA in assessing the 
densities of multiple elements in a structure. For this 
purpose, vibration signals were recorded from a plastic 
laboratory test tube (capacity 30 ml), when it was empty 
and when it was individually filled with three liquids of 
known densities(water, Chloroform and Methanol). Figure 
2 shows the experimental set up.  

The bottom part of the tube was held in a vice. The 
force to produce the vibration was provided by a modified 
solenoid that was connected to a computer through a 
suitable drive circuitry. The magnitude of the applied force 
was controlled via the computer. The induced vibration 
signals were recorded using two piezoelectric sensors (type 
CM-01B).CM-01B was chosen because it is a lightweight 
sensor with high sensitivity (typical 40 V/mm) designed to 
pick up vibration signals, while minimizing external 
acoustic noise. The impact point and sensor locations were 
marked by a marker to be identifiable during the 
experiment (see Figure 2). 
 

 
 
 It was ensured that the magnitude of the applied 
force was consistent throughout each test and that the force 
was applied to the same point on the tube. The vibration 
signals were recorded using a National Instrument data 
acquisition system. The signal sample rate was 100,000 
samples per second. The tube was exited 20 times to allow 
the consistency of vibration signals to be examined. 
 The experiment was repeated when the tube was 
separately filled with (i) water (ii) Chloroform (iii) 
Methanol. These liquids were chosen because their known 
densities are significantly different. 
 The recorded vibration signals were initially 
processed by ICA. Then the power spectral densities (PSD) 
of the resulting extracted components were estimated using 
the periodogram approach. The periodogram used the 
Goertzel algorithm. 

The relationship between the frequency associated 
with the highest peak in each PSD and theknown density of 
the liquid was investigated. 
 

4. RESULTS AND DISCUSSION 
 

Figures 3 and 4 show the averaged (over 20 signals) 
vibration signals together with the corresponding ICA 
extracted components from sensors 1 and 2 respectively 
when the plastic tube was empty. 

 
 
 

 
 
 Figures 5 and 6 show the 20 abutted vibration 
signals recorded from sensors 1 and 2 and their respective 
ICA extracted components when the plastic tube was 
empty.  

ICA performed more effectively when it processed 
the vibration signals that consisted of the 20 trials abutted 
together. Therefore, all analyses reported in this paper are 
based on the 20-abutted signals. 
 

 
Fig. 4. The averaged vibration signal from sensor 2 
before ICA (top) and its corresponding ICA 
component (bottom)for the empty test tube. 

 

 
Fig. 3. The averaged vibration signal from sensor 1 
before ICA (top) and its corresponding ICA 
component (bottom)for the empty test tube. 

 
 

Fig. 2. Experimental set up 
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 Figure 7 shows the PSD for the vibration signals 
obtained from sensors 1 and 2 when the plastic tube was 
empty and the PSD of their respective ICA extracted 
components. ICA has not made a noticeable difference in 
the recorded vibration signals. A reason for this could be 
that sensor 2 had been placed close to the vice and thus the 
vibration it has received had been dampened significantly. 
The experiment will be repeated in future with sensor 2 
placed closer to sensor 1 to reduce this effect.  

Figures 8 and 9 show the averaged vibration signals 
recorded from sensors 1 and 2, when the tube was filled 
with Methanol. The Methanol signals are shown as an 
example of the type of signals analysed. A feature of ICA 
is that, an extracted component can be inverted in relation 
to its original signal and its magnitude can be changed. 

This is the case for the ICA extracted components shown in 
Figure 8.  
 

 

 
 
The 20 abutted vibration signals and their 

corresponding ICA components for Methanol are shown in 
Figures 10 and 11.  
 
 

 
Fig. 8. The averaged vibration signal recorded from 
sensor 1 before ICA (top) and its corresponding ICA 
component (bottom)for the test tube filled with 
Methanol. 

 

 
Fig. 7. Power spectral density obtained for sensor 1 
before ICA (S1b) and after ICA (S1a) and Power 
spectral density obtained for sensor 2 before ICA (S2b) 
and after ICA (S2a), when the test tube was empty. 

 

 
Fig. 6. Twenty abutted vibration signals recorded from 
sensor 2 before ICA (top),the corresponding component 
ICA (bottom) for the empty test tube. 

 
Fig. 5. Twenty abutted vibration signals recorded from 
sensor 1, before ICA (top) and the corresponding ICA 
component (bottom) for the empty test tube. 
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As an example, the PSDs associated with the 

vibration signals from the two sensors, when the test tube 
was filled with Methanol are shown in Figure 12. The 
PSDs   of the ICA extracted components when the test tube 
was empty and PSDs when it individually contained the 
three liquids were compared. This indicated the frequency 
components in the region of 1000 to 2000 Hz have greatest 
difference in the  PSDs of the ICA extracted component for 
the tube and three liquids. Therefore, it was considered that 
this frequency range had the most relevant vibration 
information about the objects being tested. The PSD of 
ICA extracted component for the empty tube had a peak at 
1553 Hz in this frequency region. 
 

 

 
 Table 1 indicates the densities of the three liquid 
liquids used in the study (i.e. Methanol, Water and 
Chloroform). For each liquid, the frequency that the highest 
peak occurred in the PSD of sensor 1, (following ICA) is 
also shown.  
 The vibration frequency for each liquid (shown in 
Table 1) was subtracted from the vibration frequency peak 
(in the 1000 to 2000 Hz region) obtained from sensor 1 
when the test tube was empty (ie. 1553 Hz). This resulted 
in vibration frequency differences that indicated the effect 
of the liquid contained in the test tube on the measured 
vibration. A plot of the resulting vibration frequency 
differences against the liquids’ densities is provided in 

 
Fig. 12. Power spectral densityobtained for sensor 1 
before ICA (S1b) and after ICA (S1a) and power spectral 
density obtained for sensor 2 before ICA (S2b) and after 
ICA (S2a), when the test tube was filled with Methanol. 

 
Fig. 11. Twenty abutted vibration signals recorded from 
sensor 2 before ICA (top) and the corresponding ICA 
component (bottom) for the test tube filled with 
Methanol. 

 

 
Fig. 10. Twenty abutted vibration signals recorded from 
sensor 1 before ICA (top) and the corresponding ICA 
component (bottom) for the test tube filled with 
Methanol. 

Fig. 9. The averaged vibration signal recorded from 
sensor 2 before ICA (top) and its corresponding ICA 
component (bottom) for the test tube filled with 
Methanol. 
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Figure 13.This indicates that as the density of the liquids 
increases the measured frequency difference increases. 
 
 

 

 
 
This finding indicatesthat there is a relationship 

between frequency difference and the liquid density. 
Desnser liquids have a greater effect on the tube’s 
vibration. In Figure 13, this relationship is approximated to 
a linear relationship by introducing the best fit through the 
points, giving the first order relationship equation  

 
6.2568.0 −= densitydifferencefrequency  (6) 

 
This equation can then be expressed in term of the liquids’ 
densities as, 
 

8.0
6.256+

=
differencefrequencydensityliquid        (7) 

 
The experiment needs to be repeated for a larger 

number of liquids with a greater range of densities in order 
to establish whether the density-frequency difference 
relation is linear (as was considered in this study or it is 
nonlinear. Another area for further investigation is the 
manner of vibraion of the the liquid within the tube in 
relation to the tube’s vibration. Finally, more critical 
investigations are needed to establish the effectivenees of 
ICA to analyse vibration signals. 
 

5. CONCLUSIONS 
 
 This study investigated the use of vibration analysis 
and independent component analysis (ICA) to assess the 
densities of three liquids in a test tube. There was a 
relationship between the densities of the liquids and the 
vibration frequency of the ICA extracted frequency 
components.  
 This is a preliminary study and a more detailed 
investigation is required to assess the effectiveness of ICA 
in extracting different components of the vibration signals 
and to determine the nature of the relationship (i.e. linear or 
nonlinear)  between the vibration frequency and the liquid 
densities. 
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Fig. 13. Plot of vibration frequency difference against 
the three liquids’ densities. 
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Table 1 The liquid parameters 

Liquid Density 
(kg/m3) 

Sensor-1 
Extracted 
Vibration 
Frequency 

(Hz) 

Vibration 
frequency 
difference 

(Hz) 

Methanol 791.8 1133 420 

Water 1000 1094 459 

Chloroform 1489 605 948 
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