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Abstract 

Patients in modern healthcare demand superior healthcare quality. Clinical pathways are introduced 
as the main tools to manage this quality. A clinical pathway is a task-oriented care plan that specifies 
steps to be taken for patient care. It follows the clinical course according to the specific clinical problem. 
During clinical pathway execution, variance or deviation from the specified care plan could occur, and 
may endanger the patient’s life. In this paper, a proposed framework for artificial neural networks 
(ANNs) in clinical pathway variance predictions is presented. This proposed research method predicts 
the variance that may occur during Acute Decompensated Heart Failure Clinical Pathway. By using 
the Artificial Neural Network, 3 variances (Dialysis, PCI, and Cardiac Catherization) are predicted from 
55 input. The results show that artificial neural networks with the Levenberg-Marquadt training 
algorithm with a 55-27-27-1 architecture achieve the best prediction rate, with an average prediction 
accuracy of 87.4425% for the training dataset and 85.255% for the test dataset. 

Keywords: Artificial neural network, acute decompensated heart failure, variance prediction, clinical 
pathway 
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INTRODUCTION 

A clinical pathway (CP) is set of tools which plays an important 

role in improving the quality of patient care and increasing healthcare 

organizations’ efficiency by supporting the standardized treatment 

process. Clinical pathways were introduced in the mid-1980s by Zander 

and Bower, and can be described as the guidelines for clinical practice 

for specific groups of patients, based on a particular diagnosis. Clinical 

pathways specify the categories of care, activities, and procedures that 

need to be conducted for the patient until they are discharged from the 

hospital, displayed in a timeline. Deviation of actual care from the 

standardized care activity may happen anytime during an episode of 

care, which is called variance, and is also managed and handled by the 

clinical pathway. 

Clinical pathways can bring benefits to the healthcare provider. 

Among their benefits are: 1) improve patient clinical outcomes; 2) help 

to reduce hospital costs and help hospital management to optimize 

resources in terms of equipment or personnel. Common practice of 

clinical pathways requires medical professionals to manually fill in 

predefined paper documents. This practice, known as a paper-based 

clinical pathway, is limited and not dynamic, which brings several 

problems. These problems include: 

1) Limited to just the capacity of data collection and recording. 
2) Separated from the hospital information system. 
3) Lack of support for real time patient monitoring.
4) The complex logical and timed relationship of different

activities cannot be described with the simple description in

term of forms.
5) Unable to detect and handle variance dynamically.

 To overcome some of these problems, an electronic clinical 

pathway is introduced. Efforts to develop computerized or electronic 

clinical pathways have already been going since the 1990s, when the 

linear sequential model of the electronic clinical pathway was 

developed in early 1990s. Since then, electronic clinical pathways 

evolved to state transition models of electronic clinical pathways in the 

late 1990s, the structural design was adapted in the 2000s, and was 

further developed to utilize an ontological design in 2007. Furthermore, 

the capability of electronic clinical pathways was further enhanced by 

embedding the electronic clinical pathway with electronic medical 

records and integrating the electronic clinical pathway with the nursing 

process.  
Most of the current practice around electronic clinical pathways is 

not dynamic or adaptive. During the event of variance, most of the 

current electronic clinical pathways only provide the means to detect, 

record, or handle the variance occurrence. Most of the methods 

proposed for variance management in clinical pathways usually deal 

with one type of variance and rely on the fuzzy rules provided by the 

domain expert, which are difficult to obtain. 

This research proposes a method to predict variance during clinical 

pathways in order to give better preparation for the treatment. Artificial 

Neural Networks (ANN) prove to be powerful tools for mapping 

nonlinear data, and are known to be useful in solving nonlinear 

problems where the rules to solve the problem are difficult to obtain or

are unknown. This paper proposes the use of artificial neural networks

to predict variance for acute decompensated heart failure (ADHF)

clinical pathways. The objective of this paper is to show the framework

of artificial neural networks for variance prediction in ADHF clinical

pathways. 
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Table 1 Review on selected clinical pathway variance studies.

 

Author, 
Year 

Field Clinical 
Pathway 

Proposed 
Method 

S. 
Wakamiya 

and K. 
Yamauchi 

(2006)  

Variance 
documentation, 
classification, 
and analysis 

Various Electronic 
system for 

paper based 
clinical pathway 

management 
that is capable 

of 
documenting, 

classifying, and 
analyzing 
variances 

Kate L. 
Hyet et al 

(2007)  

Variance 
documentation, 
classification, 
and analysis 

Various Clinical 
variance 

management 
and analysis 

application are 
proposed 

Xiang Li 
et al 

(2014)  

Variance 
analysis 

Congestive 
heart failure 

Automated 
clinical pathway 

variance 
analysis for 
multistage 

clinical 
pathways is 
proposed   

Yan Ye et 
al (2006)  

Variance 
handling 

General Proposed 
generalized 
fuzzy ECA 

(GFECA) rules 
and typed fuzzy 

petri net 
extended by 

process 
knowledge 
(TFPN-PK) 
models for 

analysis and 
handling of 

clinical pathway 
variances 

Gang Du 
et al 

(2012)  

Variance 
Handling 

Osteosarcoma 
preoperative 

chemotherapy  

Takagi-Sugeno 
(T-S) fuzzy 

neural network 
with random 
cooperative 

decomposing 
particle swarm 
optimization 

algorithm 
(RCDPSO) and 
discrete binary 
version of PSO 

algorithm 
learning 
algorithm 

Gang Du 
et al 

(2013)  

Variance 

Handling 

Osteosarcoma 

preoperative 

chemotherapy 

Takagi-Sugeno 

(T-S) fuzzy 

neural network 

with random 

cooperative 

decomposing 

particle swarm 

optimization 

double mutation 

mechanism 

enhancement 

learning 

algorithm 

(RCDPSO_DM) 

	
Most of the research on clinical pathways mainly focuses on 

documenting, classifying, analyzing, and handling variances. 
Documenting variance deals with the aspect of recording its 
occurrences, while classifying variances will help the clinical pathway 
to identify what type of variance (system variance, staff variance, or 
patient variance) occurs and whether the variance is good (e.g. 
decreasing of patient’s length of stay), or bad (e.g. patient 
complications during treatment). Table 1 shows a review on the 
research of clinical pathway variances. 

S. Wakamiya and K. Yamauchi have proposed a system that is 
capable of managing clinical pathway variances. Low-cost 
implementation and portability are the main features of the proposed 
systems. Systems prior to the systems proposed by Wakamiya and 
Yamauchi needed specialized hardware and software, which are not 
easy to adapt for the use of other institutions. The proposed system 
could be implemented to various clinical pathways. Clinical pathways 
that have been implemented using the proposed systems are 
Gastroenteritis, Cardiac Catheterization, Bronchitis, Pneumonia, 
Cataracts, Acute Myocardial Infraction, Transurethral 
Ureterolithorispy and Infant Bruising. 

Clinical variance management and analysis (CVMA) applications 
were proposed by Kate L. Hyet et al. in 2007. This application is 
designed to collect variance data for documentation, classification, 
and analysis of variance. The variance analysis application enabled 
the collection of variance data from clinical pathways and can readily 
be changed to accommodate new clinical pathways or additional 
variances. Unfortunately, this application is not integrated with 
electronic medical records or any electronic clinical pathway systems. 
The capabilities of this system are limited to managing reported 
variance data, and are unable to automatically redesign clinical 
pathways based on the reported variances. 15 clinical pathways are 
used in this study, which covers small rural hospitals and large 
regional hospitals. 

A method for automated variance identification and analysis was 
proposed by Xiang Li et al. in 2014. The proposed method is able to 
automatically identify the deviation between actual patient traces in 
electronic medical records and a multistage clinical pathway. The 
clinical pathway variance analysis method proposed by Xian Li et al 
uses a clinical pathway and patient traces of cohort in Electronic 
Medical Records as inputs, and the variance analysis report as an 
output. The clinical pathway use in this study is the congestive heart 
failure clinical pathway. Even though the proposed method is able to 
identify deviation in the clinical pathway, it is still unable to define 
whether the deviation is positive (e.g. reduce length of stay) or 
negative outcomes (e.g. prolonged length of stay). 

Several researchers have proposed methods for variance handling. 
Yan Ye et al. (2009) presented a knowledge-based variance 
management system which has been developed based on unified 
modeling language (UML) with the use of generalized fuzzy ECA 
(GFECA) rules and typed fuzzy petri net extended by process 
knowledge (TFPN-PK) models for analysis and handling of clinical 
pathway variances. The architecture of the proposed system consists 
of three levels, which are the client level, application level, and 
knowledge base levels. The client level consists of a user interface for 
different types of users and the clinical pathway workflow system. 
The application level consists of four modules, including a fuzzy 
reasoning and variance handling engine. The knowledge based level 
consists of medical knowledge which is represented using ontology. 
The variance handling engine is activated by the clinical pathway
workflow system when the variance information and handling request 
is sent. The engine searches for the appropriate rules matching the 
variances in the GFECA rule base. If the rules are found, it performs 
rule reasoning; otherwise it activates the TFPN-PK based fuzzy 
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Gang Du et al proposed the use of the Takagi-Sugeno (T-S) fuzzy 

neural network with a novel hybrid learning algorithm for handling 

variances in liver poisoning of the osteosarcoma preoperative 

chemotherapy clinical pathway. The proposed method integrates the 

random cooperative decomposing particle swarm optimization 

algorithm (RCDPSO) and the discrete binary version of the PSO 

algorithm to optimize the structures and parameters of the T-S fuzzy 

neural network. The fuzzy neural network based variance handling 

method recommends the dosage of liver protection drugs based on two 

lab tests (Alanine Aminotransferase and Aspartate AminoTransferase) 

and the patient experience index. Even though the proposed method 

successfully improves the optimization performance, it still has a 

premature convergence and low precision that has not been solved 

completely. With the implementation of a double mutation in 

RCDPSO, the aforementioned problems are resolved. 

Even though recent research has proposed the management of 

variance of clinical pathways, there is still a lack of a variance handling 

method that can detect and handle variances at the same time.  It is 

important for clinical pathways to be able to detect and handle variances 

effectively to provide high quality care to the patient. 

METHODS 

This research proposed the application of a neural network to 

predict variance, deviation, or additional procedures for a heart failure 

clinical pathway. The case study used in this study is based on an Acute 

Decompensated Heart Failure (ADHF) clinical pathway. Data is taken 

from National Heart Institute (IJN) in Kuala Lumpur, Malaysia.  

Based on the data collected, we have established the main treatment 

and variance that occurred during acute decompensated heart failure 

clinical pathway. Table 2 shows the overall number of procedures and 

treatments that were completed and recorded in the IJN Cardiology 

ADHF database. 

Table 2 
IJN databases. 

Treatment/Procedure 
Number of 
Treatments 
Recorded 

Percentage 

Diuretic Prescription 4138 92.00% 
Aspirin Prescription 2671 59.42% 

Digoxin 1925 42.82% 

Clopidogrel Prescription 1780 39.59% 

Dialysis  173 3.80% 

PCI  64 1.42% 

Angiography 278 6.18% 

Cardiac Catheterization  44 0.90% 

Based on Table 2, most of the patients have been treated using 

noninvasive treatment, where the most common treatment was using 

diuretic drugs. However, some of the patients required alternative or 

additional treatments and procedures for their condition. These 

additional procedures included Angiography and Cardiac 

Catheterization, and additional treatments included PCI and Dialysis 

treatment. 

Dialysis is a process involving removing waste and excess water 

from the blood, and is used for those who have lost kidney function or 

for those with acute disturbance in kidney function. Percutaneous 

Coronary Intervention (PCI) is non-surgical revascularization 

technique used for treating obstructive coronary artery diseases, 

including unstable angina, multi vessel coronary disease (CAD), and 

acute myocardial infarction (MI). Angiography is a medical imaging 

technique used to visualize blood vessels, which is mainly used to 

visualize arteries, veins, or heart chambers. Cardiac catheterization 

(Card Cath) is a heart examination procedure to find out how well your 

heart is working. This research aims to predict these three additional 

treatments and procedures using an artificial neural network. 

ANN framework for ADHF variance prediction 
In this section, we briefly introduce the basic neural network 

concept for clinical pathway variance prediction. A neural network 

consists of an interconnected group of artificial neurons, and it 

processes information using a connectionist approach to computation. 

ANN has been implemented in various fields. In healthcare, ANN is 

implemented for clinical diagnosis, drug development, image analysis, 

and signal analysis. ANN has proven to be useful for modeling complex 

relationships between inputs and outputs, or to find patterns in data. 

Others advantages of ANN are: 

1) Requires less formal statistical training to develop 

independent and dependent variables 

3) Capable of discovering all possible interactions between predictor 

values 

4) Can be developed using different training algorithms. 

Even though ANN is a powerful tool for prediction and has been 

widely used, it still depends on a trial and error process in order to 

obtain the successful model. Until now, there were no clear rules on 

how to obtain the best and most successful model of ANN. Since ANN 

is fully dependent on a trial and error process, there were 5 influencing 

factors that contributed to the best ANN model. These influencing 

factors are network structure, network algorithm, transfer function, 

training function, and performance function. These factors can be 

summarized as a neural network configuration. 

Furthermore, data setup can also influence the effectiveness of the 

ANN model. In data setup, the collected raw data will be processed 

before being used for the ANN model. This process is also known as 

data preprocessing. After data processing is completed, the dataset will 

be divided into training and test datasets. 

Data Setup 
Data used for this research was collected from the Cardiology 

Medical Record (Acute Decompensated Heart Failure) Database in the 

National Heart Institute (IJN) of Malaysia. The data collected consists 

of 4495 patients between the period of 1st January 2009 – 22nd 

December 2015. Data is taken from the IJN Cardiology Medical Record 

Acute Decompensated Heart Failure (ADHF) Database. Based on the 

data analysis, we have determined 55 inputs and 3 outputs for the ANN 

model. Table 3 shows the inputs and outputs of the proposed neural 

network for ADHF variance prediction.  

After the data is obtained, data preprocessing is conducted. Data 

cleaning and transformation are primarily used for data preprocessing 

in our dataset. Data cleaning involves filling in missing values in the 

dataset, smoothing the noisy data, and resolving inconsistencies in 

dataset. Missing values are the main issue in our dataset, where the 

dataset contains a lot of missing data resulting in misplaced data and 

human error. These missing values is filled using equation (1). 

𝐗 =  
𝟏

𝒏
∑ 𝒃𝒊 =  

𝟏

𝒏
 (𝒃𝟏 +  𝒃𝟐 + ⋯ + 𝒃𝒏

𝒏

𝒊=𝟏
)  (1) 

Where X is the value of missing data, n is the number of attributes in 

missing data classes, and b is the value of individual attributes in the 

missing data classes.  

Data transformation techniques are applied after the data cleaning 

process is completed. Data transformation consolidated data into forms 

that are appropriate for the use of the neural network model. The raw 

data consisted of string and date/time data that the neural network 

cannot process. So these data need to be transformed to numerical or 

Boolean data types. Table 4 shows the examples of data transformation 

for the ANN dataset. 
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Table 3 

INPUT OUTPUT 

1. Gender 
2. Age 
3. Weight 
4. Height 
5. Smoking Habits 
6. Previous Heart Failure 

Hospitalization 
7. Pre Hospital LVEF 
8. Coronary Artery Disease 
9. Previous PCI Procedure 
10. Previous CABG Procedure 
11. Previous MI 
12. Renal Insufficiency 
13. Creatinine more than 37 
14. Regular Dialysis 
15. Atrial Fibrillation 
16. Diabetes 
17. Hypertension 
18. Hyperlipidemia/Dyslipidemia 
19. Stroke 
20. COPD/Asthma 
21. Dyspnea 
22. Peripheral Edema 
23. Ascites 
24. Lung Crepitation 
25. Elevated JVP 
26. Hepatomegaly 
27. Admission Systolic BP 
28. Admission Diastolic BP 
29. Admission Heart Rate 
30. Admission Respiratory Rate 
31. ECG Procedure Done 
32. Rhythm ID 
33. Q Wave 
34. ST Segment Depression 
35. ST Segment Elevation 
36. No Infarction Evidence 
37. QRS Duration 
38. X-ray Procedure 
39. Cardiomegaly 
40. Pleural Effusion 
41. Congestion 
42. Ill-defined Opacity 
43. Acute Pulmonary Edema 
44. Urea Level 
45. Sodium Level 
46. Potassium Level 
47. Creatinine Level 
48. Uric Acid Level 
49. Random Blood Sugar Test 
50. Bilirubin Level 
51. Albumin Level 
52. CK Level 
53. Hemoglobin Test 
54. Admission LVEF 
55. LVEF not done 

1. Dialysis Procedure 
2. PCI Procedure 
3. Angiography 

Procedure 
4. Cardiac Catheter 

Procedure 

Table 4  Data transformation examples. 

Input Classes Transformed Data 

Gender Male → 0, Female → 1

Previous MI (Myocardial 
Infarction) 

Does not have → 0, Have → 1
 

Date of birth  → Age
 

04-12-88  → 28
 

After data processing is completed, the dataset needs to be divided 

into training and test datasets. The data division process is an important 

part of evaluating neural network models. The training dataset is used 

by neural network models to discover potentially predictive 

relationships. The test dataset is used to evaluate the performance of the 

neural network model. This research used the k-fold cross validation 

technique. K-fold cross validation randomly partitioned into k equal 

size of subsamples. For this research, we use k value that used is 10 

which means the dataset is partition into 10 samples. Of 10 partitions, 

a single partition of samples is used as test data to validate the neural 

model, while the other 9 samples are used as training data. This process 

is repeated 10 times with each of the partitions used exactly once as the 

test data.   

NEURAL NETWORK CONFIGURATION 

The feed forward neural network consists of three main layers, 

which are input layer, hidden layer, and output layer. Input and output 

usually consist of 1 layer, and the hidden layer could consist of a 

minimum of 1 layer. Fig. 1 shows examples of feed forward neural 

network architecture. The number of input nodes and output nodes 

depends on the collected data, while the numbers of hidden nodes for 

ANN are based on trial and error.  

A guideline by Zhang, Patuwo and Hu (1998) recommended the 

number of hidden nodes according to “n/2”, “1n”, “2n”, and “2n+1” 

where n is the number of input nodes. Since the number of input nodes 

in this research is 61, the number of hidden nodes that will be used are 

32, 61, 122, and 123, respectively. To limit the trial and error process, 

the number of hidden layers used for this research is 1. Table 5 shows 

the structures of neural networks used in this research. 

Table 5 Proposed neural network structures. 

Input Hidden 
Layer 

Hidden 
Nodes 

Output Network 
Structures 

55 

1 

27 

4 

55-27-4 

55 55-55-4 

110 55-110-4 

111 55-111-4 

2 

27 55-27-27-4 

55 55-55-55-4 

110 55-110-110-4 

111 55-111-111-4 

Fig. 1  Feed Forward Neural Network Architecture 

Multi-layer feed forward neural networks are the most commonly 

used algorithms in medical diagnosis. The feed forward neural network 

can be described in equation (2). 

ẏ𝑙 =  𝑓 ∑ 𝑤𝑖,𝑗

𝑖

𝑥𝑖 + 𝑏𝑖

 

(2) 

Where ẏ𝑗is the output of the network, f is the transfer function, 𝑤𝑖𝑗

is the weight, 𝑥𝑖 is the input, and 𝑏𝑖 is the bias. From equation (2), the 

multi-layer feed forward neural network with 1 hidden layer can be 

further derived as: 
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ẏ𝑙(𝑛) = 𝑓𝑘(∑ 𝑉𝑗,𝑘𝑓𝑗(

𝑁1

𝑘=1

∑ 𝑊𝑖,𝑗𝑥𝑖(𝑛) + 𝑏𝑖) + 𝑏𝑗)

𝑁0

𝑖=1

(3) 

Where, ẏ is the output of the neural network, f is the transfer 

function of the neural network, N is the number of nodes in the 

respective layer (N0 is the number of nodes in the input layer and N1 is 

the number of nodes in the 1st hidden layer), Vj,k is the weight of the 

neural network between the hidden layer and output layer, Wi,j is the 

weight from the input layer to the hidden layer, 𝑥𝑖(𝑛) is the input of the 

neural network, and 𝑏 is the bias of the neural network.  

The most commonly used transfer function in neural networks is 

the sigmoid function. For this research we used the sigmoid transfer 

function. The sigmoid transfer function (log-sigmoid) can be 

represented as equation (4): 

𝑓 =  
1

1 + 𝑒−𝑛

 
(4) 

Where n is the output of the hidden layer.  

The values of weight (Wij, Vjk, Zkl) and bias (bi, bj, bk) are 

iteratively changed by the training function in order to achieve the best 

prediction accuracy. Weight and bias are adjusted by the training 

function based on the error produced by the network. This error value 

could be obtained using the performance function. There were several 

performance functions that could be used in neural networks. We used 

MSE (Mean Squared Error) and Cross Entropy performance functions 

in this research. For multi-class classification problems, cross entropy 

is widely used as a neural network performance function. However, 

some of the training functions that use the Jacobian based matrix 

calculation (e.g. Lavenberg-Marquadt and Bayesian Regulization) used 

MSE or SSE (Sum Squared Error) for weight and bias calculations. 

Cross Entropy produces error values that heavily penalize outputs that 

are extremely inaccurate (ẏ near 1-t), with very little penalties to a fairly 

correct classification/prediction (ẏ near t). Minimizing cross entropy 

and MSE values leads to a good neural network model. Cross Entropy, 

using equation (5), produced error values and MSE using equation (6). 

𝑒𝑟𝑟𝑜𝑟 = 𝐸 = −𝑡𝑙  •  log ẏ𝑙

 

(5) 

𝑒𝑟𝑟𝑜𝑟 = 𝐸 =
1

2
(𝑡𝑙 − ẏ𝑙)2 (6) 

Where 𝑡𝑙 is the output target and ẏ𝑙 is the neural network predicted 

output. After the error value is computed, the training algorithm will 

adjust the weight and bias of the neural network based on the error 

value. The training functions that are often used by researchers in the 

field of medical diagnosis are back propagation algorithms. Back 

propagation algorithm is a learning function and commonly used 

method for training neural networks, where it uses gradient descent 

algorithms that minimize squared error. Squared errors are minimized 

by using an iterative process of gradient descent. Gradient descent can 

be expressed in equation (7): 

𝑔𝑖  =
𝜕𝐸𝑖

𝜕𝑊𝑖
(7) 

Where 𝑔𝑖 is the gradient of the ith iteration, E is the error of the 

network for the ith iteration, and W is the weight and biases of the ith 

iteration. Weight and biases are updated in the direction of network 

error (performance function) decreases most rapidly (negative of 

gradient) using equation (8). 

𝑈𝑖+1  = 𝑈𝑖 − 𝜂𝑔𝑖 (8) 

Where 𝑈𝑖 is a vector of current weight and biases, 𝑔𝑖 is the current 

gradient, and 𝜂 is the learning rate (proportional parameter which 

defines the step length of each iteration in the negative gradient 

descent). The learning rate value is defined by the user, where the small 

value of 𝜂 could lead to a true approximation or prediction while 

slowing the learning process. However, choosing a larger value of 𝜂
could speed up the neural network convergence, which may cause 

oscillation in the weight spaces. Basically, back propagation works as 

follows:  

1.
 
network is calculated,  

2.
 

Sensitivities (𝛥 𝑊𝑖 and 𝛥 𝑏𝑖

layer to the first layer, and  

3.
 

The weight w and biases b of the neural network are updated.  

Back propagation uses the chain rule in order to compute 

derivatives of the squared error with respect to the weights and biases 

in the hidden layers.  

This algorithm is called back propagation because the derivatives 

are computed first in the last layer of the network and then propagated 

backwards through the network to compute the derivatives in the 

hidden layer. However, there are several variations of the back 

propagation algorithm. The variations of the back propagation training 

algorithm include: 

1. Lavenberg-Marquadt 

2. Bayesian Regulation back propagation. 

3. BFGS quasi-Newton backpropagation 

4. Resilient Back propagation 

5. Scaled Conjugate Gradient 

6. Conjugate Gradient with Powell/Beale Restarts 

7. Fletcher-Reeves Conjugate Gradient 

8. Polak-Ribiére Conjugate Gradient 

9. One Step Secant 

10. Gradient descent back propagation 

11.

12. Gradient descent with momentum 

13.

This research used several variations of back propagation 

algorithms, including the gradient descent method (Gradient Descent 

with Momentum, Gradient Descent with Momentum and adaptive 

learning rate), the Conjugate gradient method (Scaled Conjugate), and 

the Quasi-Newton method (Lavenberg-Marquadt). 

Gradient descent with momentum 
As mentioned previously, the low value of

 
η produces a better 

prediction/approximation but will slow the neural network 

convergences, while a larger value of η will cause the neural network to 

converge faster but will result in oscillation in the weight spaces. These 

problems can be resolved by introducing a momentum constant. The 

gradient descent with momentum constant (m) can written as: 

𝑈𝑖+1  = 𝑈𝑖 − 𝜂𝑔𝑖 +  𝑚 (9) 
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Gradient descent with momentum and adaptive learning rate 
Gradient Descent with momentum and adaptive learning rate is the 

extension of the gradient descent with momentum algorithm, where the 

learning rate is adaptively changed by the neural network instead of 

being specified by the users. The learning rates are changed according 

to these 3 rules: 

If the squared error of the training set is increased by more than the 

specified percentage ζ (which is usually between 1-5 percent) after the 

weight is updated, then the weight will be discarded. The learning rate 

then will be multiplied by some factors p (usually between the values of 

0-1) and the momentum constant will be set to zero. 

If the squared error is decreased after the weight update, then the 

weight is accepted. The learning rate then will be multiplied by some 

factors η > 1 and if the momentum constant is previously set to zero, it 

is reset to its original value. 

If the square error increases by less than ζ, then the weight update is 

accepted. The learning rate and momentum constant are unchanged. 

Levenberg-Marquadt 
The Levenberg-Marquadt was designed to minimize functions that 

are sums of squares of other nonlinear functions, and is suited for neural 

network trainings that use the mean squared error as the performance 

index. When the performance function uses the mean squared error or 

sum squared error, the Hessian matrix can be approximated as:  

𝐻 =  𝐽𝑇𝐽
 (10) 

And the gradient can be computed as: 

𝑔 =  𝐽𝑇𝐸 (11) 

Where J is the Jacobian matrix that contains the first derivatives of 

the network errors with respect to the weights and biases, and E is a 

vector of network error. The vector of current weights and biases can be 

updated using this approximation: 

𝑈𝑖+1  = 𝑈𝑖 − [𝐽𝑇𝐽 +  µ𝐼]−1𝐽𝑇𝐸
 

(12) 

Parameter µ is adaptively changed until it reduces the network error. 

The µ value will decrease after each successful iteration that results in a 

reduction of network performance function and is only increased when 

a tentative step would increase the value of the performance function.  

The scaled conjugate gradient algorithm is based on conjugate 

directions instead of a local gradient. Conjugate gradient back 

propagation typically involves 4 steps: 

1.
 

Select the first search direction p0
 
to be the negative of the 

gradient: 

𝑝0  = −𝑔0

 

(13) 

2. The line search is then performed using equation (9) to 

determine the optimal distance to move along the current 

search direction, where 𝛼𝑘 is used as a positive scalar which 

determines the scale of the step size taken by the function 

𝐿𝑘+1  = 𝐿𝑘 + 𝛼𝑘𝑝𝑘
 

(14) 

3. Select the next search direction using:  

𝑝𝑘  = −𝑔𝑘 +  𝛽𝑘𝑝𝑘−1 (15) 

The value of β can be calculated using several functions: 

𝛽𝑘 =  
∆𝑔𝑘−1

𝑇 𝑔𝑘

∆𝑔𝑘−1
𝑇 𝑝𝑘−1

 𝑂𝑟 𝛽𝑘 =  
𝑔𝑘

𝑇𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

  𝑂𝑟 
∆𝑔𝑘−1

𝑇 𝑔𝑘

𝑔𝑘−1
𝑇 𝑝𝑘−1

(16) 

4. If the algorithm is not converged, continue from Step 2. 

Development of neural network model 
This research proposed a method for ADHF clinical pathway 

variance prediction using an ANN model. The method used to develop 

ANN based variance prediction of ADHF clinical pathways can be 

summarized in Fig. 2. The data collection process was conducted at the 

National Heart Institute (IJN). After the data collection process, data 

analysis was conducted to identify variance and input data. Then, data 

preprocessing was conducted, along with the determination of neural 

network structures. The neural network experiment is conducted after 

the datasets and neural network structures are finalized. The experiment 

was conducted using the MATLAB R2014b on the computer with the 

following specifications: Intel Core i-7 with 2.60 GHz, RAM 12.0 GB, 

and a 64-bit processing system. The selection of the transfer function, 

training function, and performance function has been discussed in the 

Neural Network Configuration section. After the experiment has been 

conducted, the results will be compared to find the best ANN model for 

ADHF clinical pathway variance prediction. The main criteria to 

determine the best ANN model are the lowest fitness function and 

prediction accuracy. The fitness function, used for evaluation, is the 

same as the performance function used by the network to update the 

weights, which are Cross Entropy and MSE. The summary of the neural 

network configuration used in our research is shown Table 6. 

Fig. 2 ANN-based model development flowchart for ADHF clinical 
pathway variance prediction. 
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Table 6 ANN structures used for ADHF variance prediction. 

NETWORK STRUCTURES 

55-27-4 

55-55-4 

55-110-4 

55-111-4 

55-27-27-4 

55-55-27-4 

55-110-27-4 

55-111-27-4 

TRAINING FUNCTION 

Lavenber
g-

Marquadt 

Scaled 
Conjugat

e 

Gradient Descent 
with momentum 

Gradient Descent 
with momentum 

and adaptive 
learning rate 

Learnin
g Rate 

(𝜂) 

Moment
um (α) 

Initial 
Learnin
g Rate 

(𝜂) 

Moment
um (α) 

0.01 - 
0.9 

0.1 - 
0.9 

0.01 - 
0.9 

0.1 - 
0.9 

TRANSFER FUNCTION 

Sigmoid – Logsig (Hidden Layer) Softmax (Output Layer) 

PERFORMANCE FUNCTION 

Mean Squared Error (MSE) Cross Entropy 

Neural network evaluation 
The mean squared error (MSE) and prediction accuracy are used to 

evaluate the performance of the proposed neural network model. A 

good neural network model can be achieved when the MSE is low and 

the prediction accuracy is high. MSE can be calculated using equation 

(4). Prediction accuracy can be computed using equation (17). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 − 
𝑚

𝑠
 ) 𝑥 100% (17) 

Where m s

of data samples. 

Table 7 Training function: Scaled conjugate BP (trainscg). 

Architecture 
Training 
(%) 

Test (%) 
Cross 
Entropy 
(Training) 

Cross 
Entropy 
(Test) 

55-27-4 52.38 47.24 0.831 0.865 
55-55-4 53.81 45.79 0.833 0.894 
55-110-4 52.19 44.99 0.833 0.898 
55-111-4 55.59 48.03 0.84 0.91 
55-27-27-4 55.73 50.8 0.839 0.868 
55-55-55-4 52.46 46.04 0.836 0.872 
55-110-110-4 50.52 44.35 0.836 0.889 
55-111-111-4 53.35 44.88 0.83 0.9 

Table 8 
(traingdm). 

Architecture 
Training 
(%) 

Test (%) 
Cross 
Entropy 
(Training) 

Cross 
Entropy 
(Test) 

55-27-4 54.6 47.62 0.828 0.87 
55-55-4 55.07 43.95 0.821 0.903 
55-110-4 51.7 43.03 0.834 0.912 
55-111-4 44.07 40.39 1.018 1.031 
55-27-27-4 53.78 48.42 0.84 0.868 
55-55-55-4 53.39 47.11 0.835 0.88 
55-110-110-4 41.182 45.8 0.872 0.891 
55-111-111-4 56.84 46.99 0.874 0.931 

Table 9 
adaptive learning rate BP (traingdx). 

Architecture 
Training 
(%) 

Test (%) 
Cross 
Entropy 
(Training) 

Cross 
Entropy 
(Test) 

55-27-4 54.14 47.76 0.832 0.87 
55-55-4 47.94 39.47 0.871 0.931 
55-110-4 49.02 40.65 0.863 0.922 
55-111-4 48.89 43.41 0.943 0.988 
55-27-27-4 53.64 48.94 0.841 0.867 
55-55-55-4 53.54 46.04 0.843 0.884 
55-110-110-4 43.3 40.37 0.888 0.91 
55-111-111-4 43.91 40.93 0.942 0.977 

Table 10 Training function: Levenberg-Marquardt (trainlm). 

Architecture Training 
(%) 

Test (%) 
MSE 
(Training) 

MSE 
(Test) 

55-27-4 55.02 48.94 0.303 0.319 
55-55-4 53.97 43.93 0.313 0.318 
55-110-4 58.6 44.74 0.306 0.315 
55-111-4 57.28 46.19 0.299 0.322 
55-27-27-4 57.78 50.92 0.30 0.32 
55-55-55-4 55.55 49.2 0.308 0.325 
55-110-110-4 57.74 45.93 0.302 0.322 
55-111-111-4 54.95 45.39 0.304 0.326 

The objective of this research was to find the best neural network 

model for ADHF clinical pathway variance prediction. There were 32 

different models of neural networks compared, which differ in training 

functions and network structures. Initial results show that the neural 

network with a 55-27-27-4 architecture produces the best results in the 

3 of 4 training functions used. The Levenberg-Marquadt training 

function produces the best prediction results among the other 4 training 

functions.  

However, initial results show the best overall prediction result 

(Lavenberg-Marquadt) only achieved 57.78% for the training dataset 

and 50.92% for the test dataset. The low prediction rate may be caused 

by the fact that several patients may have several variances in their 

treatment. In order to increase the neural network prediction rate, we 

changed the neural network structures in our experimental setup. We 

using the best neural network model obtained in our initial experiment 

and changed the output nodes to 1 output, where each output class is 

trained and tested separately. The network configuration used in the 

second experimental setup was: 

1. Network Structures = 55-27-27-1 

2. Training Function = Levenberg-Marquadt (trainlm) 

3. Transfer Function = Sigmoid – Logsig (Hidden Layer) and 

Satlins (Output Layer) 

4. Performance Function = MSE 

Table 11 Dialysis prediction results. 

X Fold 
Training 

(%) 
Test (%) 

MSE 
(Training) 

MSE 
(Test) 

1 93.2 86.6 0.66 0.11 

2 91.5 84.2 0.07 0.11 

3 90 76.3 0.07 0.17 

4 96.4 88.2 0.03 0.09 

5 91.9 85.5 0.07 0.12 

6 92.2 86.8 0.06 0.1 

7 93.5 94.7 0.06 0.07 

8 92.2 94.7 0.06 0.05 

9 92.2 94.7 0.06 0.05 

10 91.5 94.7 0.06 0.03 

Average 92.46 88.64 0.12 0.09 
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Table 12 PCI prediction results. 

X Fold 
Training 

(%) 
Test (%) 

MSE 
(Training) 

MSE 
(Test) 

1 92.4 92.1 0.07 0.07 

2 93.2 84.2 0.07 0.15 

3 92.1 94.7 0.07 0.05 

4 91.5 97.4 0.08 0.25 

5 92.6 89.5 0.07 0.1 

6 92.2 93.4 0.06 0.06 

7 92.4 92.1 0.07 0.08 

8 92.4 92.1 0.08 0.08 

9 92.4 92.1 0.07 0.07 

10 91.9 96.1 0.08 0.03 

Average 92.31 92.37 0.072 0.094 

Table 13 Angiography prediction results. 

X Fold Training 
(%) 

Test (%) MSE 
(Training) 

MSE 
(Test) 

1 69.1 69.7 0.20 0.21 

2 70.6 72.4 0.22 0.24 

3 65.9 60.5 0.22 0.23 

4 74.6 65.8 0.16 0.23 

5 65.7 64.5 0.22 0.22 

6 70.6 65.8 0.20 0.21 

7 74.7 60.5 0.17 0.25 

8 77.3 65.8 0.16 0.20 

9 66.8 57.9 0.16 0.30 

10 64.6 73.7 0.30 0.26 

Average 69.99 65.66 0.201 0.235 

Table 14 

X Fold 
Training 

(%) 
Test (%) 

MSE 
(Training) 

MSE 
(Test) 

1 94.7 96.1 0.04 0.03 

2 96.4 98.7 0.03 0.01 

3 94.5 93.4 0.04 0.03 

4 94.5 97.4 0.04 0.02 

5 94.7 96.1 0.04 0.04 

6 94.8 94.7 0.04 0.05 

7 94.5 97.4 0.04 0.03 

8 95.4 89.5 0.03 0.09 

9 94.9 93.4 0.04 0.07 

10 95.7 86.8 0.03 0.11 

Average 95.01 94.35 0.037 0.048 

Table 15 Overall results. 

Variances Training 
(%) 

Test (%) MSE 
(Training) 

MSE 
(Test) 

Angiography 69.99 65.66 0.201 0.235 
Cardiac 
Catheter 

95.01 94.35 0.037 0.048 

Dialysis 92.46 88.64 0.12 0.09 
PCI 92.31 92.37 0.072 0.094 

Average 87.4425 85.255 0.1075 0.11675 

Discussion 

The accuracy of variance prediction improved significantly by 

changing its structure. The overall prediction rate increased to 87.445% 

from 57.78% for the training dataset, and increased from 50.92% to 

85.255% for the test dataset. It is shown that network structures play a 

significant role in improving the prediction accuracy. Generally, 

artificial neural networks performed well in predicting 3 of 4 cases of 

variance in the ADHF clinical pathway. The artificial neural network 

can predict variance cases of Cardiac Cathether, PCI, and Dialysis with 

high accuracy (around 90% accuracy). However, for the case of 

angiography, the prediction results still did not achieve the desired 

performances. 

CONCLUSION 

In this paper, the methodology of variance prediction for ADHF 

clinical pathway using an artificial neural network is presented. The 

best model of neural network has been obtained and presented. Future 

works will involve the combination of fuzzy logic with proposed neural 

network models for the improvement of classified results. Furthermore, 

the application of feature selection techniques could be used to increase 

prediction accuracy.  
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