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Abstract 
 
This paper focuses on the application of backstepping control scheme for the time fractional order 
partial differential equation (FPDE). The fractional derivative is presented by using Caputo fractional 
derivative. The design technique here can exhaust systems with an arbitrary finite number of open 
loop unstable eigenvalues and is not limited to a certain kind of boundary actuation. We show how 
the FPDE is converted into a Mittag-Leffler stability by designing invertible coordinate transformation. 
Numerical simulation is given to demonstrate the effectiveness of the proposed control scheme. 
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INTRODUCTION 
 

We can define the boundary control as a distributed parameter 

control that has been widely studied and developed in the control 

theory. It is not very recent when the researchers started to investigate 

the general parabolic equations and the boundary feedback stabilisation 

of this kind of equations. Triggiani [1] and Lasiecka [2] used the semi 

group theory in order to evaluate a general form to obtain the 

eigenvalues for parabolic problems. Then, an auxiliary functional 

observers has been developed by Nambu [3], to stabilise diffusion 

equations by the use of boundary observation and feedback. Moreover  

Bensoussan et al. [4] discussed the stabilisation of the optimal control 

setting by the boundary control. 

There is a huge amount of attention these days on the boundary 

control of K-S equation [5,6], Burgers equation [7], KdV-Burgers 

equation, C-H equation [8,9], heat equation [10–13]. The boundary 

control of the K-S equation is studied in [5] with an external excitation, 

specifically by using the semi group theory and Banach contraction 

fixed point to satisfy the existence and uniqueness of the solution. It has 

been presented in [7] the existence of an optimal controller and suitable 

index of performance   J(y; u) regarding to Galerkin method. While in 

[14], a new simple controller was proposed for Chen’s chaotic system. 

The heat equation is a typical parabolic equation, which has rich 

physics background. Recently, many researchers have been focusing on 

the heat equation with backstepping control law [15–19], which is still 

a boundary control. Nevertheless, according to our knowledge, there 

are only few attempts on the method of boundary feedback stabilisation 

to deal with the unstable FPDE. The boundary stabilisation of fractional 

wave equation based on numerical solution technique has given a 

boundary control of a Caputo fractional wave equation through a 

fractional order boundary controller was studied in [20,21]. 

One important feature of the fractional order models over the 

integer order ones is that many real life applications can be described 

by utilising notation of fractional order [22,23]. 

Based on what was listed above, this paper focuses on the following 

FPDE 

 

0 ( , ) ( , ) ( ) ( , ) in (0,1) (0, ),c q

t xxD s x t s x t x s x t      (1) 

 

where the boundary conditions are 

 

(0, ) 0, 0,s t t   (2) 

 

or 

 

(0, ) 0, 0,xs t t   (3) 

1

1

0

(1, ) ( ) ( , ) ,s t k s t d     (4) 

 

where, 00 1, 0, ( ) (0,1), c q

tq x L D      represents the Caputo 

fractional order derivative and 0

q

tI  is the representation of the 

Riemann-Liouville fractional order integral, and are defined as [24]. 

 

1

0

( , ), 1,

( , )

( , ), 0 1,

q

t

q

t

s x t q
t

D s x t

I s x t q
t




 

 
  

 

 

 

and 

1

0

0

1
( , ) ( ) ( , ) , 0.

( )

t

q q

tI s s t t r s x r dr q
q

  
   

 

 

 

Equation (1) could be applied in many real life applications. It is 

introduced in [25] to better characterise reaction diffusion processes in 
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inhomogeneous environment in space. For instance, the dispersive 

transport media that performs reaction diffusion process [26], following 

through sourced porous media [27], and many other dynamical 

diffusion processes in disordered media [28]. In our work, equation (1) 

is considered to model a thin rod with heat loss to the surrounding 

environment. Also, it deals with the heat generation in the thin rod due 

to space in an inhomogeneous environment.  

When 1,q  Eq. (1), is reduced to the classical integer order 

unstable heat equation. The boundary feedback control law with 

Dirichlet boundary conditions by using discretise backstepping method 

was studied in [29]. 

Recently we proposed the backstepping method for stabilising 

nonlinear FPDE with constant coefficients. The semi-discretised 

fractional order backstepping approach introduced to find the boundary 

controller function which stabilises nonlinear FPDE with Dirichlet 

boundary conditions by transformation it into an equivalent stable 

closed loop [30-32]. In this paper, we devote to discuss the boundary 

control for Eq. (1). We use the backstepping method for the semi 

discretisation of the Eq. (1) to derive a Dirichlet and Neumann 

boundary feedback control law that makes the closed loop system 

stable. We show that the integral kernel in the control law is bounded. 

The rest of this paper is set up as follows: our problem is discussed 

and discretised with Dirichlet condition in Section 2 and with 

homogeneous Neumann boundary condition is presented in Section 3. 

Finally, Section 4 provides a numerical simulation to illustrate the 

effectiveness of proposed control scheme. The conclusions are devoted 

in the last section. 

Dirichlet boundary conditions 
Consider the following system, 

0 ( , ) ( , ) ( ) ( , ) in (0,1) (0, ),

(0, ) (1, ) 0 in (0, ).

c q

t xxD s x t s x t x s x t

s t s t

    

  
(5) 

For any positive and large value of  the system (5) will be unstable 

[33]. Take the coordinate transformation bellow, 

0

( , ) ( , ) ( , ) ( , ) , (0,1), (0, ).

x

r x t s x t k x s t d x t       (6) 

together with the Dirichlet boundary feedback control, 

1

1

0

(1, ) ( ) ( , ) .s t k s t d    (7) 

The system, 

0

0

( , ) ( , ) ( ) ( , ) in (0,1) (0, ),

(0, ) 0 in (0, ),

( ,0) ( ) in (0,1),

c q

t xxD s x t s x t x s x t

s t

s x s x

    

 



(8) 

one can transform the above system into the following system, 

0

0

( , ) ( , ) ( , ) in (0,1) (0, ),

(0, ) (1, ) 0 in (0, ),

( ,0) ( ) in (0,1).

c q

t xxD r x t r x t a r x t

r t r t

r x r x

   

  



(9) 

The q -order derivative of the transformation (6) due to time is, 

 

0

0

( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( ,0) (0, )

( , ) ( , ) ( ,0) (0, )

( , ) ( , ) ( , ) ( ) ( , ) .

c q

t xx x x

x

D r x t s x t x s x t k x x s x t k x s t

k x x s x t k x s t

k x s t k x s t d

 



   

 

       

    

 



Next, we differentiate (6) with respect to x obtained, 

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) .

xx xx x x

x

xx

d
r x t s x t k x x s x t k x x s x t k x x s x t

dx

k x s t d  

   

 

Then, we get that 0 ( , ) ( , ) ( , ) 0c q

t xxD r x t r x t ar x t  

 
0

0 ( , ) ( , ) ( , ) ( ) ( , ) ( ,0)

(0, ) ( , ) ( , ) ( , )( ( ) ) ( , ) .

x

x

x xx

d
k x x k x x k x x x a s x t k x

dx

s t k x k x k x a s t d





    

        

 
       
 

   

 

The  first  step of  obtaining Eq. (6) in a constructive form is to discretise 

(1), (2) and  (4). The following step is to develop a transformation  with  

strange coordinate for the discretised system. Finally, examine the 

convergence of the infinite dimensional transformation. We define, 

( , ), ( )i is s il t il   for 0,1, , 1i m K where , 1 / ( 1).m l m                                 

The discrete coordinate transformation for system (6) can be 

formulated as, 

1 1 2 1( , , , ), 1, , .i i i ir s s s s i m    K K                                         (10)                     (10) 

A discretised of System (1), (2) and (4) due to the space x, using finite 

differences is, 

0

1 1
0 2

1 1 2

0,

2
1, , ,

( , , , ).

c q i i i
t i i i

m m m

s

s s s
D s s i m

l

s s s s

 



 





 
  



K

K

                               (11)                     (11) 

The target transformed System (9) has the discretised form, 

0

1 1
0 2

1

0,

2
1, , ,

0.

c q i i i
t i i

m

r

r r r
D r ar i m

l

r

  





 
  



K                                  (12)                      (12) 

The  finite dimensional  transformation  (10)  convergence to the 

infinite dimensional  one  (6) has  been proven to have a boundedness 

kernel [29,34]. 

The Gain Kernel 
In this subsection, the derivation of the kernel’s recursiver 

elationship is presented as follows: 

The first step is to differentiate the transformation (10) with respect to 

time in q-order to get: 

1
1 1

0 0

1

(2 ) .

qqi
jc q c q q i

t i t i j q q
j j

s
D r D s q s

s t


 




   

 
                                    (13)                       (13) 

Substituting Eqs. (11) and (12) in (13) gives, 

1 1 1 1

2 2

1
1 1

1

2 2

(2 ) .

i i i i i i
i i i

qqi
jq i

j q q
j j

r r r s s s
ar s

l l

s
q s

s t

  



   


 



   
   


 

 


                          (14) 
(14) 

Solving the obtained equation for 'si , we get the recursive formula, 

http://www.foxitsoftware.com/shopping
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2 2

1 2

21
1 1

1 1

1

2 ( )

(2 ) 2 ,

i i i i i

qi
q i
j j j j j jq

j j

al l
a s

l
q s s s s s

s

   
 






 


 

 



 
      
 

 
     

  


              (15) (15) 

for 1, ,i m K with initial values
0 1 0    . Writing the 'si   in 

the linear form gives, 

1

, 1, , ,
i

i ij j

j

k s i m


  K                                                          (16) (16) 

and  performing  simple calculations we obtain the general recursive 

relationship,  

2

,1 1 1,1 2,1 1,2( ) ,i i i i

l
k a k k k


                                                        (17) 

2

, 1, 1, 1 1, 1 2,( ) , 2, , 2,i j j i j i j i j i j

l
k a k k k k j i


           K         (18) 

2

, 1 1 1, 1 1, 2( ) ,i i i i i i i

l
k a k k


                                                           (19) 

2

, 1, 1 ( ),i i i i i

l
k k a 


                                                                     (20) 

for 4, ,i m K with initial conditions, 

2

1,1 1( ),
l

k a 



                                                                              (21) 

4
2

2,1 12
( ) ,

l
k a 




                                                                            (22) 

2 2

2,2 1 2( ) ( ),
l l

k a a 
 


                                                            (23) 

6 2
3

3,1 1 23
( ) ( ),

l l
k a a 

 


                                                           (24) 

2 2 2 4
2

3,2 2 1 2 12
( ) ( ) ( ) ( ) ,

l l l l
k a a a a   

   

 
       

 
             (25) 

2 2 2

3,3 1 2 3( ) ( ) ( ).
l l l

k a a a  
  


                                          (26) 

In fact, these gains are bounded. Besides, based on the [29], we see that: 

Proposition 1 [29]: The sequence 
,{ }i jk defined in (17)-(26) has the 

elements that should satisfy, 

1
2

,

2 1
2[ / 2]

1

( ) ( )
1

1
( ) ,

1 2

j

i i j

j h
j

h

i l
k a i j

j

j h i h l
a

h j hh











 



  
      

  

     
   

    


                             (27) 

where 
 0,1

max ( )
x

x 




Proposition 2 [29]: Suppose that two functions ( ) (0,1)r x L and 

( ) (0,1)s x L satisfy the relationship, 

 
0

( ) ( ) ( , ) ( ) , 0,1 ,

x

r x s x k x s d x      %                                     (28) 

where ([0,1]; (0,1)).rk C L% Then, n and N are positive constants with 

size dependence only on ,k% such that ,n r s N r
  
 

.n r s N r 

Proposition 3 [35]: Assume that x is a continuous and differentiable 

function defined on :[0, ) .x   Then for any given 0,t  one can 

get 

2

0 0

1
( ) ( ) ( ), (0,1].

2

c q c q

t tD x t x t D x t q                                             (29) 

Theorem 1. Suppose that ( ) (0,1)x L  and , 0, (., )a r t  is a 

continuous and differentiable function on the interval [0, ) and the 

Laplace transform of 
2 (., )r t exist. For any 0 (0,1)s L , system (1), 

with (2) and (4) has a unique solution satisfy, 

2 2

1 0 1( , ) ( 2 ), 0,q

qs x t n s E at n                                                   (30) 

where 
0

( ) , .
( 1)

i

q

i

t
E t t

qi





 
 



Proof.  By Proposition 2,  there exist v > 0 such that, 

0 0(., ) (., ) , .s t v r t r v s                                                          (31) 

Let, 
1

2

0

( ) (1 / 2) (., ) .R t r t dx                                                                     (32) 

By Proposition 3, we have 

1

2

0 0

0

( ) (1 / 2) (., ) 2 ( ).c q c q

t tD R t D r t dx a R t  

Let, 

0( ) 2 ( ) ( ).c q

tW t aR t D R t                                                                (33) 

The Laplace transform of (33) is 

1 ˆ(0) ( )ˆ ( )
2

q

q

s R W s
R s

s a

 



, where 

1

2

0

0

(0) (1/ 2) ( ) .R r x dx 

By the use of the uniqueness and existence theorem [36], inverting the 

transform of (33) leads to the following unique solution, 

1( ) ( 2 ) (0) ( )*[ ( 2 )], 0.q q q

q qR t E at R W t t E at t                          (34) 

In addition, it is clear that 1qt  and ( 2 )q

qE at are both nonnegative 

functions, then 

( ) ( 2 ) (0), 0.q

qR t E at R t                                                               (35) 

Implies that 
2 22

0(., ) ( 2 ), 0 .q

qs t v s E at t    

For the convergence of the finite difference approximations obtained 

from (11), and (12), to the solutions of (1)-(4), and (9), respectively see 

[37]. 

Neumann boundary conditions 
We continue the discussion of the proposed control scheme. In this 

section, we consider the case when this scheme has a Neumann 

boundary condition. In this case, one can use the following technique, 

http://www.foxitsoftware.com/shopping
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starting with a finite-dimensional coordinate transformation of a 

backstepping-style, 

0 0

1 1

1 1 1

1

,

,

( , , ), 2, , ,

0,

i i i i

m

r s

r s

r s s s i m

r

  







  



K K
                                            (36) 

Now, the original system has been transformed to the semi-discretise 

infinite-dimensional system, 

0

0

( , ) ( , ) ( , ) in (0,1) (0, ),

(0, ) 0 in (0, ),

(1, ) 0 in (0, ),

( ,0) ( ) in (0,1).

c q

t xx

x

D r x t r x t a r x t

r t

r t

r x r x

   

 

 



                         (37) 

by using the same technique as in Dirichlet case, one can obtain, 

2 2
1

1 2 1

2 1
11 1

2 1 1

21

2

1 1

2 ( ) (2 )

1 (2 )

2 .

q

i i i i i

q qi
qi i
jq q

j j

j j j j

al l
a s q s

l
s s q s

s s

l
s s s

   
 

 









 


 



 

 
         
 

   
           

  
     
  

                (38) 

Writing the 'si in the linear form (16) we have, 

2

,1 1 1,1 2,1 1,2( ) 1 ,i i i i

l
k a k k k


  

 
     
 

                                        (39) 

where , , 1, ,i j i ik k  and ,i ik are defined in (18)-(20). The initial conditions 

for the recursion can be written as, 

4 2
2

2,1 1 12
( ) ( ),

l l
k a a 

 


                                                           (40) 

2
2 2 2

3,1 1 1 2( ) 1 ( ) ( ),
l l l

k a a a  
  

 
       

 
                             (41)   

2 2 2 2 2

3,2 2 1 2 1 1( ) ( ) ( ) ( ) 1 ( ),
l l l l l

k a a a a a    
    

   
           

   

    (42) 

1,1 2,2, ,k k and 3,3k are defined as the same case in Dirichlet.  

Same as for the Dirichlet case, it is shown by the numerical 

solution that the coefficients 
, 1{( 1) }m

m j jm k  are still bounded. The 

numerical solution also shows the coefficients oscillation, and this 

oscillation is increased if m is increasing, see Fig. 1 and Fig. 2. 

Fig. 1 Oscillation of the approximating kernel for 50, 10, 1, 1m a    

Fig. 2 Oscillation of the approximating kernel for 100, 10, 1, 1m a    

Lemma 1: The sequence 
,{ }i jk defined in (39)-(42) has elements that 

should satisfy the following 

1
2

,

2 1
2[ / 2]

1

1
2[( 1) / 2] 2 1

0 0

( ) ( )
1

1
( )

1 2

1
2 ( ) ,

j

i i j

j h
j

h

z
j j h

h z

i l
k a i j

j

j h i h l
a

h j hh

h z i h l
a

h z














 




  

 

  
      

  

     
    

    

      
   

   



 

                   (43) 

where 
 0,1

max ( )
x

x 




Proof. First, estimate the initial values of k’s as follows 

2

1,1 ( ),
l

k a 


                                                                                (44) 

2 2 4 2
2

2,1 2
( ) 1 ( ) ( ) ( ),

l l l l
k a a a a   

   

 
        
 

              (45) 

2

2,2

2
( ),

l
k a 


                                                                             (46) 

6 4 2
3 2

3,1 3 2

2 2
( ) ( ) ( ),

l l l
k a a a  

  
                                      (47) 

4 2
2

3,2 2

3
( ) ( ),

l l
k a a 

 
                                                           (48) 

2

3,3

3
( ),

l
k a 


                                                                             (49) 

and ,i ik and , 1i ik  as, 

2

, ( ),i i

il
k a 


                                                                               (50) 

4 2
2

, 1 2

( 1)
( ) ( ).

2
i i

i i l l
k a a 

 



                                                (51) 

By the use of the general identity of 
,i jk and mathematical induction 

one can obtain the inequality (43) of  Lemma 1. 

Lemma 2. The sequence , 1, , , 1{( 1) }m j j m mm k   K remains uniformly 

bounded in m and j as .m 

Proof. We can write 
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1

, 2

2 1
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     
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     

   



 

      (52) 

The first two terms appeared in expression (27), therefore the third term 

could be estimated from (52) by using the inequality 

( ) ,z
h z h z

h z
h z

    
     

   
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1
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z z
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   
                                                                          (54) 

and max 2 1 1 1,h z h z h bm h bm h bm m             we 

obtain 
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Theorem 2. Suppose that ( ) (0,1)x L  and , 0, (., )a r t  is a 

continuous and differentiable function on the interval [0, ) and the 

Laplace transform of 
2 (., )r t exist. For any 0 (0,1)s L , system (1), 

with (3) and (4) has a unique solution satisfy 

2 2

2 0 2( , ) ( 2 ), 0.q

qs x t n s E at n                                                 (55) 

Proof. The proof is similar to Theorem 1. 

Neumman type of actuation 
This subsection presents the extension of control law from the 

Dirichlet into the Neumann type, which can be obtained by setting 

(1, ) 0,r t  so that  

0

(1, ) (1, ) ( , ) ( ) , 0 1.

x

r t s t k x s d x      %                                     (56) 

The boundary condition of the target system using (1, )xs t at 1x  is 

presented by 

1(1, ) ( , ).xr t c r x t                                                                               (57) 

Derive Eq. (56), with respect to x 

0

(1, ) (1, ) (1,1) (1, ) ( , ) ( ) .

x

x x xr t s t k s t k x s d     % %                            (58) 

Substitute Eqs. (56), and (57), in (58) 

1 1

1 1

0 0

(1, ) (1, ) (1,1) (1, ) (1, ) ( ) (1, ) ( ) .x xs t c s t k s t k s d c k s d         % % %

(59) 

The discrete version of the original system, the target systems and the 

coordinate transformation lead to the formula 

(1, ) (1, ) .mr t s t                                                                             (60) 

Differentiating Eq. (60), in space x and solve for (1, )xs t we obtain 

1
, 1,,dis

1 1 ,

1 1

(1, ) .
m m

m j m jm m

x m m j m j j

j j

k kk
s t c s s s c k s

l l




 


                     (61) 

Comparing Eqs. (59), and. (61), it is guaranteed that 

dis(1, ) (1, ), 0.m

x xs t s t t                                                       (62) 

Since it is uniform boundedness of 
,i jk l

Numerical simulation 
The main target of this section is to test the effectiveness of the 

presented theoretical results, in Eq. (1), by taking a simulate example 

with ( ) 17, 0.3.x     Let the initial condition be 

6.7

0( ) 0.01 sin(8 )xs x e x                                                                 (63) 

Using the technique presented in Proposition 1, consider 1,a 

200m  with the kernel ( ) ( )mk x k x see Fig. 3. While Fig. 4 shows 

oscillation after enlarging some part of ( )mk x . This implies to a non-

continuous limiting kernel function ( )k x .  

Fig. 3 Kernel function km(x) for m=200. 

Fig. 4 Oscillation of the approximating kernel function. 

The results of the simulations of the open loop system (1, ) 0s t 

are presented in Fig. 5 and Fig. 7 with fractional order 0.7,q  and 
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integer order 1,q  respectively. While the results of the closed-loop 

systems are presented in Fig. 6 and Fig. 8. The system was discretised 

using a BTCS finite difference method with 200 steps and Dirichlet 

controller.  

One can see that the state of the uncontrolled fractional system 

quickly grows and the initial condition is rapidly smoothed even though 

the fractional system is unstable. While for the controlled fractional 

system, the instability is quickly suppressed and the state converges to 

the zero equilibrium.  

The results show the effectiveness of the proposed controller to 

stabilise the FPDE system and for integer order 1,q  we obtained the 

same results that obtained by [29].  

Fig. 5 Solution of the system without control when q = 0.7. 

Fig. 6 Approximation of controlled system when q=0.7 

Fig. 7 Solution of the system without control when q = 1. 

Fig. 8 Approximation of controlled system when q=1 

CONCLUSION 

In this paper we proposed the discretised technique for designing 

boundary feedback controller for the time FPDE with two different 

cases (Dirichlet and Neumann) of boundary conditions at x = 0. 

Numerical simulation shows that our results are in satisfactory 

agreement in dealing with unstable FPDE. We hope that the result have 

could be provided some insights into the qualitative analysis of the 

design of fractional order controller. 

For future work, one can assume more applications of the proposed 

procedure for a board class of  FPDE, 

0

0

( , ) ( , ) ( ) ( , ) ( ) (0, )

( , ) ( , ) , 0 1,

c q

t xx

x

D s x t s x t x s x t x s t

f x y s y t dy x

     

 

with boundary conditions 

(0, ) 0, or (0, ) (0, ), 0,xs t s t s t t  

1

0

(1, ) (1, ) ( , ) , 0.s t k y s y t dy t 
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