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Abstract 

This paper presents the interaction between the aqueous humour (AH) flows and the deformation of 
Descemet membrane detachment (DMD) in a 3D anterior chamber (AC). Arbitrary Lagrangian 
Eulerian (ALE) method is used to model the problem. Finite element method using COMSOL 
Multiphysics software is adopted to solve the governing equations for the AH flows and the 
deformation of DMD. The fluid flow behaviour and the deformation of the detached Descemet 
membrane are analysed in order to comprehend the progression of the DMD in the AC due to the AH 
flows and vice versa. The re-attachment or re-detachment of the DMD is significantly affected by the 
AH flows. Advance treatment for the DMD can be developed based on a better understanding of the 
interaction between the AH flows and the DMD. 
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INTRODUCTION 

Descement membrane detachment (DMD) is a human eye disease 

and it causes blindness. DMD happens in the region called as anterior 

chamber (AC). AC is bounded by cornea, iris and pupil and filled by 

aqueous humour (AH) which has properties similar to water. Cornea 

is the clear dome like surface that exists at the front of a human eye 

and it covers the iris and the pupil, as shown in Figure 1. The cornea 

is made up by three main layers and two auxiliary layers, those are 

epithelium, stroma, endothelium, Browman layer and Descemet 

membrane (DM). Epithelium is the outermost layer and endothelium 

is the innermost layer of the cornea. Stroma is the intermedium layer. 

Moreover, Browman layer is the layer lies between the stroma and 

epithelium and DM is the layer lies between the stroma and 

endothelium. DMD happens when there is a tear or break on the DM 

which allows the AH flows into the subspaces between the stroma and 

DM, and consequently separate the DM away from the stroma. 

Fig. 1  Schematic diagram of the AC of human eye. 

Mulhern et al. (1996), Potter and Zalatimo (2005) and Ünlü and 

Aksünger (2000) have reported that the DMD is induced by cataract 

surgery, iridectomy, trabeculectomy, corneal transplantation,  deep 

lamellar keratoplasty, holmium laser sclerostomy, alkali burn and 

viscocanalostomy. The technique of curing of DMD caused by 

cataract surgery with sulphur hexafluoride injection is discussed by 

Sevillano et al. (2008). Further, 2005 studied the case of treating the 

DMD by injecting intracameral perfluoropropane (C3F8) into the AC. 

Recently, Couch and Baratz (2009) investigated two cases of delayed 

bilateral DM, one eye was fixed surgically and the other eye improved 

spontaneously. They estimated that the spontaneous reattachment 

happen because of the AH flow in the AC driven by the buoyancy 

effects. Motivated by Couch and Baratz (2009), Ismail et al. (2013)

developed a new mathematical model of the AH flow in the AC with 

DMD based on the work done by Canning et al. (2002), to explain the 

spontaneous reattachment phenomena. The authors concluded that the 

AH flow driven by the temperature difference across the eye and the 

orientation of the patient may control the clinical outcomes for the 

DMD. 

Ismail et al. (2013) assumed that the AH flow in the AC is only 

driven by the gravity and buoyancy and hence, they considered the 

flow to be essentially two dimensional as explained in Canning et al.

(2002). Therefore, they studied a two dimensional ‘sectionally thin-

layer’ flow when a DMD is present in the AC. The surface of the 

cornea and the iris are assumed to be stationary tissue. The iris or 

pupil is assumed to have a fix temperature 302KpT  . The cornea 

surface is imposed with a constant heat flux. The lubrication theory 

limit of the Navier-Stokes equations were employed by Ismail et al.

(2013), in order to study the problem analytically. They concluded 

that the spontaneous reattachment of DMD is affected by the AH flow 

in AC. 

However, the exact mechanisms of the spontaneous reattachment 

appears not to be known. This is because the interaction between the 

AH flows and the deformation of DMD is not considered in the 

previous studies. DMD in the flow stream of AH is subjected to fluid 
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forces that will cause it to deform. The fluid forces are dependent on 

the geometry of the DMD and also the deformation, since the AH 

flows. Thus, the governing equations for the DMD as well as for the 

fluid need to be solved simultaneously. Lagrangian description is 

usually used to formulate the DMD, and Eulerian description is most 

often used to express the fluid for a convenient description of its 

convective nature. It is inconvenient to descript the fluid flow by 

using Lagrangian description which employs a referential frame 

moving with the flow to track the fluid motion. This is because a 

frequent remeshing is required due to large deformations due to the 

fluid motion, consequently increasing the required computational 

resources. On the other hand, if the Eulerian description is applied to 

descript the motion of DMD, the deformation of the DMD due to the 

fluid forces is difficult to track. 

Therefore, the arbitrary Lagrangian Eulerian (ALE) technique is 

introduced which combine the advantage of both the methods and the 

obstacles of a purely Eulerian or purely Lagrangian implementation 

are avoided (Kjellgren and Hyva Èrinen, 1998; Kuhl et al., 2003; Lo 

and Young, 2004; Braescu and George, 2007; Anjos et al., 2014; 

Jafari and Okutucu-Özyurt, 2016). The technique has been used by 

few researchers to investigate the human eye problem. The effect of 

intraocular pressure (IOP) variations (10, 20, and 30 mmHg ) in the 

stresses and deformations of the human eye components is analyzed 

by Karimi et al. (2016a) with the aid of a computational Lagrangian-

Eulerian coupling model. Karimi et al. (2016b) studied the stresses 

and deformations of all the human eye components due to the high 

explosive detonation by using fluid-structure interaction (FSI) model. 

Further, Karimi et al. (2016c) investigated the stresses and 

deformations of all the human eye components due to the tennis ball 

impact using a 3D computational dynamic fluid-structure interaction 

model.  

The present study is aimed to deeply investigate the role of the 

AH flows in the deformation of the DMD using a 3D computational 

ALE model. The AH flows is modelled by using the fluid mechanical 

theory which developed by Canning et al. (2002) with the presence of 

detached DM. COMSOL Multiphysics which compute the results 

based on finite element method is applied to solve the model. Finite 

element methods is easily applied to objects with irregular geometry 

like the shape of the cornea. Moreover, it is convenient to solve 

problem with mixed boundary condition and problem with the objects 

composed of several different materials in its medium (for example, 

see Nouri et al., 2002; Marcon et al., 2002; Lewis et al., 2008; Reddy 

and Gartling, 2010; Zienkiewicz et al., 2013). 

MATHEMATICAL FORMULATION 

Model Construction 
A three-dimensional AH flow driven by buoyancy effects in the 

AC with the presence of DMD has been considered. The temperature 

gradient is induced by the different temperature at the back of the AC, 

which is estimated to core body temperature ( 037 C ) to the outside of 

the cornea (say 024 C ). Buoyant convection is happen within the AC 

due to the temperature gradient that occur across the AC of the eye. 

0z  represent the plane formed by pupil aperture and the iris and 

the anterior surface of the cornea is represented by 

0( , ) (1 ( / )2 ( / )2)1/ 2z h x y h x a y a    , which the AH flow is 

introduced in a Cartesian coordinate ( , , )x y z . At the iris, the 

temperature is fixed at pT which is close to the human body 

temperature, 310.15K, and the temperature at the cornea is assumed 

to be cT , around 308.15 K. The different temperatures between the 

back of the AC and the cornea induce the temperature gradient inside 

the AC. The patient is assumed to be in an upright position thus the 

gravity, g is acting downward as shown in Figure 1. Following 

Canning et al. (2002) and Ismail et al. (2013), a set of typical values 

for the AH in the AC of the human eye is used as shown in Table 1. 

Table 1: Properties of the AH used in the model. 

Parameter  Description  Unit 

a Radius of the AC 5.5×10-3 m 
 Coefficient of thermal 

expansion  
43 10 K-1  

Pc Specific heat of the AH 4200 Jkg-1K-1 

g Gravity 9.8 ms-2  

0h Maximum height of the 
cornea 

2.75×10-3 m  

k Thermal conductivity of 
the AH 

0.57 Wm-1K-1  

 Viscosity of the AH 30.9 10 kgm-1s-1  
 Density of the AH 1000 kgm-3 

cT Temperature at the 
cornea  

308.15 K 

pT Temperature at the 
iris/pupil 

310.15 K 

U Typical buoyancy-driven 
flow speed in the AC 

410 ms-1 

The AH is assumed to be Newtonian, incompressible and driven 

by the temperature gradient. Therefore, the Navier-Stokes equations 

and energy equations which are derived based on the principle of 

conservation of energy are used to govern the fluid flow. The 

derivation of energy equations can be found in Batchelor (2000) and 

Kundu et al. (2012). Variation of density is happen due to the 

difference in temperature. The variation of the density cannot be 

neglected as it gives rise to the flow. This adds to the complexity in 

the analysis of the flow. Boussinesq approximation is applied to allow 

a more convenient procedure to obtain the solution. Boussinesq 

approximation Jaluria (1980) states that the density difference due to 

the interaction between the gravity is considered to vary with 

temperature where the density elsewhere is considered constant. Thus, 

the Boussinesq approximation governing equations of the AH flow 

driven by the temperature difference across the AC are: 
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where  is the kinematic viscosity of the fluid. The boundary 

conditions for the velocity are: 

     

        

, ,0 , ,0 , ,0 0,

, , , , , , , , , 0.

u x y v x y w x y

u x y h x y v x y h x y w x y h x y

  

  
    (2) 

The boundary conditions for temperature are as follows: 

 z 0,   at , . at p cT T T T z h x y                (3) 

where 0h is a typical depth of the AC, cT and pT denote the 

temperature at the cornea and the plane formed by the pupil and the 

iris respectively. By assuming that the fluxes and the pressures at each 

point x are continuous, the pressure is known and is equal to the 
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constant pressure ap p at x a , where ap is the normal 

atmospheric pressure and equal to 101325 Pa. Finite element method 

is applied to solve equation (1) by subjected to equations (2) and (3). 

Further, as a preliminary to the study, the detached DM is 

assumed to be a rigid, thin and small flap attached onto the anterior 

surface of the cornea and has the same temperature as the cornea, 

since originally it is a part of the cornea. Generally, DMD does not 

have a fix shape. For simplicity, in the present study, DMD is 

assumed to be a flat plate as shown in Figure 2. The Descemet's 

membrane is approximately 0.01 mm thick. The length of the DMD is 

taken to be 2 mm. The cornea and the DMD are modelled as 

stationary tissues, so the posterior cornea surface and DMD surface 

are set to non-slip condition. The temperature of these surfaces is set 

to 308.15 K. Also, the iris/pupil is modeled as stationary and the 

velocity is set to zero along the surface and temperature is set to 

310.15 K. Additionally, the problem domain and boundary conditions 

of the DMD are shown in Figure 2.  

Fig. 2  Problem domain and boundary conditions of the DMD problem. 

The computed approximation solutions of the fluid forces are then 

used to determine the deformation of the detach membrane. The DMD 

is assumed as a thin flexible elastic plate or beam. Krichhoff theory 

for small deflection of thin plate (see  Ventsel and Krauthammer, 2001

and Ismail et al., 2013 for detail. ) is adopted to estimate the 

deformation of the DMD under the influence of the fluid flows. The 

detachment, ( , , )D x y z satisfies the following equation: 

4 4 4

4 4 4
,m f

d D d D d D
D

dx dy dz


 
   

 
 

            (4) 

where mD is the flexural rigidity of the DMD and is defined as 

 3 2/12 1 .m m m DD E d   mE is the Young’s modulus, md is the 

thickness of the DMD and D is the Poisson ration of the DM 

material. f is the fluid stress tensor which obtained from the 

previous calculation. Following Ismail et al. (2013), we set 

50000 Pad
mE  , 10 mcmd  and 0.45D  .  

Computational Mesh and Numerical Method 
COMSOL Multiphysics 5.2 was used to compute the numerical 

results. A personal computer with a processor speed of 2.30 GHz and 

a RAM of 8 GB was used to perform the computation in present 

study. The governing equations (1) subjected to the boundary 

conditions (2) and (3) were first be solved by using finite element 

method. Then, the computed fluid forces were used to solve equation 

(4).  

The three dimensional model is meshed using tetrahedral 

elements. The total number of elements in the mesh of the DMD 

problem (see Figure 3) is 33257. In order to show that the results do 

not affected by the number of elements that used to mesh the 

geometry, a mesh test was conducted as shown in Figure 3b. The 

results did not depend on the number of element that use to mesh the 

geometry, thus, we hold the view that the results is independent from 

the number of elements. The desired variables such as velocity, 

pressure and temperature are approximated by using Lagrange cubic 

polynomial. The displacement of the DMD is also approximated by 

applying Lagrange cubic polynomial. 

Fig. 3  Mesh plot. 

Fig. 4  Magnitude of the velocity along the line (0,0,0) to (0,0,0.0275) in 
the AC without DMD with different mesh. 

RESULTS AND DISCUSSIONS 

Figure 4 shows the streamline plot for the fluid flow in the AC 

driven by the buoyancy convection without the DMD. The streamline 

is concur to the streamline plotted by Ismail et al. (2013) (see Figure 3 

in Ismail et al., 2013). Moreover, the maximum flow speed observed 

in present communication is 43.680 10  m/s and it is located at 

position (0, 45.441 10 ). It is great agreement with the analytical 

determined maximum flow speed by Ismail et al. (2013) which is 

43.962 10 m/s and it is located at (0, 45.811 10 ). This  has 

validated the method applied in present study to compute the 

numerical solutions, as well as enhances our confidence to the results 

obtained in the research. 

Fig. 5  Streamline plot at plane 0y  for case without DMD. 
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The AH circulates in the AC, as illustrate in Figures 5 for gravity 

acting upward in x-direction. As a result of the temperature gradient 

between the cornea and the iris/pupil, the AH adjacent to the iris/pupil 

is heated and eventually rises as buoyant flow. Then, the AH adjacent 

to the cornea becomes colder and hence becomes heavier than 

ambient fluid (see Figure 5). The existence of DMD in the AC yield 

an opposing effect on the buoyancy. The DMD increases the 

resistance to the AH flow, which is adjacent to the cornea, then 

reduces the velocity of the downward AH flow if compared with the 

case without DMD. In the subspace between the detached DMD and 

the stroma, the AH flow is able to turn around the corner and the flow 

is slow in this region and Moffatt vortices are detected Ismail et al.

(2013) as illustrated in Figure 5. An opposite phenomena is observed 

when the gravity is assumed to act downward in the x-direction as 

shown in Figure 6. 

Fig. 6  Streamline in AC when the gravity is acting upward in x-
direction. 

Fig. 7  Streamline in AC when the gravity is acting downward in x-
direction. 

The reattachment or redetachment of the DMD is contributed by 

the movement of the fluid in the subspace between the detached 

membrane and the stroma. As observed in Figure 7, the detached 

membrane is pushed away from its original position and toward to the 

stroma. This is because the pressure acting surrounding the DMD  is 

larger than the pressure acting in the subspace between the detached 

membrane and the stroma, see Figure 8. This imply that the 

movement of the fluid surrounding the DMD is significant in process 

of reattachment or redetachment of the DMD. However,when the 

direction of the gravity is changed and in downward x-direction, the 

detached membrane is moved away from the stroma as shown in 

Figure 9. This is because the changing of the direction of the gravity 

has altered the AH flow in the AC, thus the pressure distribution in the 

AC is also altered as illustrated in Figure 10. The pressure in the 

subspace between the detached membrane and the stroma is higher 

than the pressure acting surrounding the DMD. Moreover, the flow of 

the AH in the AC also causes the DMD become more severe (see 

Figure 10). 

Fig. 8  Deformation of the DMD in AC when the gravity is acting upward 
in x-direction. 

Fig. 9  .Pressure distribution in AC when the gravity is acting upward in 
x-direction. 

Fig. 10  Deformation of the DMD in AC when the gravity is acting 
downward in x-direction. 

Fig. 11  Pressure distribution in AC when the gravity is acting 
downward in x-direction. 
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Therefore, we can conclude that the reattachment or redetachemnt 

of the DMD is depended on the AH flow, which driven by the 

temperature gradient, in the AC. We speculate that the reattachment of 

the DMD phenomena may only happen under certain conditions. 

CONCLUSIONS 

The behavior of the AH convection flow in a three dimensional 

AC in the presence of DMD have been numerically studied. The 

velocity streamline, pressure distribution and deformation of the 

DMD due to the fluid flow were obtained and illustrated graphically.  

Some interesting finding of the study can be summarized as follows: 

1. The reattachment or redetachement of the DMD is depended 

on the AH flow which is driven by the temperature gradient 

between the iris/pupil and the cornea, in the AC . 

2. The direction of the gravity has a significant effect to the 

AH flow in the AC. Therefore, the effect of the gravity need 

to be take into account in order to induce reattachment of 

the DMD.  

3. The method proposed in present communication is 

appropriate and efficient in simulating the fluid flow in 

human eye as well as when different conditions are 

considered. 

In our observation, to fully realize the behavior of the AC flow 

under the effect of the DMD, more research have to be done. For 

example, the fluid flow in the AC may be changed due to the blinking 

of the eye. This is because the temperature gradient in the AC is 

altered when the eye is blinking. In the future research, the blinking 

process of the human eye have to be considered in order to fully 

understand the dynamic of the AH flow in the AC with DMD. 

Further, the mechanisms of the  reattachment or redetachment of the 

DMD is not completely developed. Many factors are not considered in 

present study such as the surface tension of the detached membrane, 

the rotation effect of the eye and so on.  
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