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Abstract 

In this paper, modified homotopy perturbation method (MHPM) is applied to solve the general 
Fredholm-Volterra integro-differential equations (FV-IDEs) of order m with initial conditions. 
Selective functions and unknown parameters allowed us to obtain two step iterations. It is found that 
MHPM is a semi-analytical method for FV-IDEs and could avoid complex computations. Numerical 
examples are given to show the efficiency and reliability of the method. Proof of the convergence of 
the proposed method is also given.  
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INTRODUCTION 

Homotopy perturbation method (HPM) [1-2] is the combination of 

two methods: the homotopy and perturbation method. In recent years, 

the application of HPM in linear and nonlinear integral and integro-

differential equations arise in various fields of science and engineering 

has been conducted by many researchers. This method reformulated 

problem to a simple problem which is easy to solve. HPM has been 

used for a wide range of problems; for finding the exact and 

approximate solutions of nonlinear ordinary differential equations 

(ODEs) [3], one-dimensional non-homogeneous partial differential 

equations with a variable coefficient [4],  non-homogeneous partial 

differential equation and fractional differential equation with initial 

conditions [5-6] respectively, non-linear Volterra–Fredholm integral 

equations and nonlinear integro-differential equations [7-8] 

respectively, Fredholm-Volterra integral equations and Fredholm-

Volterra integro-differential equations (FVIDEs) of the third kind are 

solved in [9].  

There are few modifications on HPM, one of them is adding 

unknown parameters to the homotopy function and define the unknown 

parameter by equating second iteration to be zero, it leads to two step 

semi-analytical method [10]. Second modification of HPM is adding a 

few accelerating components and selective functions to the initial 

approximation and find unknown paprametres by equating second 

iteration to be zero. It leads semianalitical solution and in many cases 

approches to the exact solution [11]. In 2009 [12], has introduced 

efficient modification of HPM that facilitates the calculations. Then, a 

comparative study between the new modified HPM and HPM were 

carried out. The modified method accelerates the rapid convergence of 

the series solution and reduces the size of work. Numerical examples 

are investigated to show the features of the technique. Another 

modification is used to divide the interval into subintervals and HPM is 

applied in each subinterval which is named multistage HPM, [13-14]. 

Modified HPM proposed in [11] is succesfully implimented in [15-16] 

for hypersingular integral equations of the first and second kind 

respectively.  

There are many methods other  than HPM to solve linear and 

nonlinear Fredholm and Volerra type integral equations [17-22] and 

integro-differential equations [23-25]. For instance, collocation method 

[17], the Galerkin Method [18], the iterative method [19], the moving 

least squares method [20], the Taylor expansion method [21] and the 

modified decomposition method [22]. Fredholm-Volterra integro-

differential equations arise from parabolic boundary value problems 

[26], the mathematical modelling of spatio-temporal development of an 

epidemic and various physical and biological problems [27]. 

In this note, the main objective is to implement modified HPM 

(MHPM) for general Fredholm-Volterra integro-differential equation 

of order m with initial conditions.  
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where ( ), = 0,1, ,ks x k m , mqp , and )(xf are continuous 

function on ],[ ba , m is the order of differential, 
1 and 

2
are 

parameters, 
iK1

and 
jK2

are square integrable kernels and )(xu is the 

unknown function to be determined. 
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Solving Eq. (1) for 
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It is not difficult to show that if differential operator uLl
 is given as 

)(= )( xuuL lm

l

  then the inverse 1

lL  has the form  
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Multiple integral of the form (3) can be written as (Kanwal [32, 

Appendix A1])  
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Applying (4) to Eq. (2) and taking into account initial condition we 

obtain  
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Operator form of Eq. (5) is 

 

 1=l l l l l lu h L S u f K u    ,                                              (6) 

   

where, 1

lL  is the inverse of differential operator defined by (4) and 
lK  

is integral operator of the form 
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When 0=l , we have  
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Writing Eq. (8) in the operator form, we get 
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Eqs (8)-(10) are the cruicial for the numerical investigations and 

perfomance of comparisons.  

 

 

METHODOLOGY 
 
Modified Homotopy Perturbation Method 
Standard HPM for Eq. (6) is usually given by 
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where )(vF  is a functional operator with known solution 0u , which 

can easily be obtained. 

The convex homotopy (11) continuously trace an implicitly defined 

curve from a starting point ),0)(( xuH  to a solution function ),1)(( xuH

. The embedding parameter p  monotonically increases from zero to 

unit as trivial problem 0=)(uF  is continuously deformed to original 
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MHPM as follows  
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where
r are the parameters to be defined and )(xgr are given 

selective functions. Forcing ( , , ) = 0lH v p  leads to the equation 
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Let us search approximate solution v  in the form of a power series 
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Truncated series of (14) at 1p   is 
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Comparing the like powers of parameter p , we get the following 

schemes  
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Remark: In MHPM the accelerating parameters 
r  are defined by 

forcing 0=1v . It leads two step iteration and gives exact solution in 

many cases. If 0=1 v  but 01 Nv  as N  then the contribution of 

, 2nv n   to the solution will be small therefore we can neglect 2, nvn
 

to find the approximate solution. 

 

Next, for the case of 0l   in Eq.(15), we have the following schemes 
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The scheme (18) is used for finding exact or approximate solution of 

Eq. (1). 

 

Convergence and error estimation 
Let us consider the space of continuously differentiable functions 

]),([ baCm  equipped with the norm  
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Let the norm of kernels be defined as 
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If 0=1v  in Eq. (17), then 0v satisfies  
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Then convergence of the approximate solution (15) is given in the 

following theorem. 
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Let us consider the case of 2n  . From (25) and taking into account 
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Continuation of this procedure yields 
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The series (14) is convergent if 0 1l  , therefore the series (14) at 

1=p  has the form  
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Since the series in (26) is geometric series with the common ratio 
l . 

Therefore, it is convergent if common ratio 0 < 1l . It implies that 

)(xv is uniformly convergent on ],[ ba .  

Numerical Results 

Example 1: Consider a fourth order FVIDE as  
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0 0 1 2= N

Nv x x x       . Therefore, we 

solve the algebraic equations by substituting points nx defined by 

= , = 0,1,i

i
x i N

N
.                                         (28) 

(28

) 

Table 1, presents errors of MHPM for ={4,6,8,10}N and 2m 

of Eq. (27). 

Table 1 Errors of MHPM for Eq.(27) 

N u v

4 33.0568297 10

6 52.7136883 10

8 71.6190520 10

10 95.2707353 10

Example 2: Consider a third order FVIDE as  

   3

0 0

4 3 1
( ) = ( ) sin( ) cos( ) ( ) sin( ) ( ) ,

2 cos(2 ) 5 5

1
(0) = 0, (0) = , (0) = 0,

4

x

u x f x x t x t u t dt t x t u t dt
x

u u u



    


 

 

   

      (29) 

where the function )(xf is  

2 4 2 4 5

2

1 3 1 4 1 3 1
( ) = sin( )

9 5 20 5 15 80 25

1 29 1
sin( )cos( ) cos( ) ( ).cos

60 18 45

f x x x x x

x x x x x

   
 

      
 

  

The exact solution of Eq. (29) is 
38

)2(sin
=)(

3xx
xu 

 .  

For this example, the inequality (24) is not satisifed in Theorem 1 . We 

choose selective function as ( ) = r

rg x x and apply the same 

calculations as Example 1. As a result, the errors are shown in Table 2.  

Table 2  Errors of MHPM for Eq. (29) 

N u v

4 1102.6733302 

6 2101.9034554 

8 4109.5209585 

10 53.3985516 10

From Table 2, it can be seen that even if condition of Theorem 1 is not 

satisfied but convergent still can be provided. This is because of 

neseccary condition. 

Example 3: Consider a second order FVIDE as  
1

1
( ) ( ) ( ) = 2sin( ) sin( ) , (0) = 1, (0) = 1,x tu x xu x xu x e x x e dt u u


                                      

  (30) 

The exact solution of Eq. (30) is xexu =)( .  

Condition in Theorem 1 for the 
0 is not satisfied for Eq. (30). The 

errors of Eq. (30) for  = 4,6,8,10N are shown in Table 3 and 

comparison of errors with Taylor method by Akyüz-Daşcioĝlu and 

Sezer [28] is shown in Table 4.  

Table 3: Errors of MHPM for Eq. (30) 

N u v

4 32.5349859 10

6 62.0592121 10

8 87.5200474 10

10 95.6622425 10

Table 4  Comparison of errors by Taylor Method [28] and MHPM for 
Eq.(30)   

x
Taylor Method [28] MHPM 

5=N 9=N 5=N 9=N

1 3101.75  7103.21  5103.89  10102.92 










10
cos


3101.3  7101.98  5103.95  9103.61 

2
cos

10

 
 
 

4105.14  8104.59  5107.52  10106.60 










10

3
cos


5109.32  9105.56  5102.41  10101.96 

4
cos

10

 
 
 

6105.97  10106.28  5103.95  10101.02 

0 0 0 0 0

6
cos

10

 
 
 

6103.55  10106.23  5103.58  10101.05 










10

7
cos


5102.21  9102.78  5101.86 

10102.38 

8
cos

10

 
 
 

4102.74  8102.09  5106.23  10104.27 










10

9
cos


4107.89  7101.38  5103.14  10102.79 

-1 3101.08  7102.35  5102.90  10105.53 
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Example 4: Consider a FVIDE as    

  

1

0 0
( ) ( ) = ( ) (1 ) ( ) ( ) ( ) ,

(0) =1.

x

u x xu x f x xt u t dt x t u t dt

u

       (31) 

where ( ) = sin( ) cos( ) 1 cos( ) sin(1) cos(1) sin(1)f x x x x x x x x       

with exact solution  ( ) = cosu x x . 

Errors of approximate solutions for Eq. (31) with  = 4,6,8,10N is 

shown in Table 5.  

Table 5 Errors of MHPM for Eq.(26) 

N u v

4 1.6760159 510

6 3.6975135 810

8 4.3460143 1110

10 1.9355063 1110

Comparison of errors with Lagrange polynomial presented in Mustafa 

and Muhammad [23] are shown in Table 6 and 7 for  = 5,8N , 

respectively. 

Table 6 Comparison of errors by Lagrange polynomial [23] and MHPM 
for 5=N for Eq. (31) 

x Lagrange Polynomial 
[23] 

MHPM 

0.2 2.392 510 1.008 710

0.4 2.857 510 2.390 710

0.6 3.409 510 3.456 710

0.8 3.818 510 4.971 710

1.0 4.300 510 4.636 710

Table 7 Comparison of errors by Lagrange polynomial [23]  
and MHPM for Eq. (31) 

x Lagrange Polynomial 
[23] 

MHPM 

0.125 1.266 910 2.085 1410

0.25 1.452 910 1.056 1210
0.375 1.671 910 2.683 1210

0.5 1.867 910 5.254 1210

0.625 2.056 910 8.535 1210

0.75 2.223 910 1.301 1110

0.875 2.387 910 1.777 1110
1.0 2.490 910 2.783 1110

Tables 1, 2 and 3 concludes that MHPM converges to the exact solution 

by increasing the number of node points , 0,1,..,ix i N and selective 

functions   , 0,1,...,ig x i N . Table 5 shows that MHPM is 

convergent but not uniformly to the exact solution. Tables 4, 6 and 7 

show the comparisons between the other methods and MHPM. It is 

clearly seen that MHPM gives more accurate results compare to Taylor 

polynomials [28] and Lagrange polynomials [23].  

CONCLUSION 

In this work, MHPM is used to solve FVIDE of order m in general 

case. In MHPM was introduced accelerating parameters ][= r and 

selective functions ])([=)( rxgxg . The unknown parameters 

][= r are obtained by equating 0=1v which lead to two step 

approximate solution. Theorem 1 presents that MHPM for problem (1) 

converges uniformly when 0 1l  in the senses of norm 

convergence. Additionally, the numerical results exhibit that 

approximate solutions are still converges when condition 0 1l 

does not satisfied. MHPM could avoid long and complex computations 

as shown in the numerical examples. 
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