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Abstract 

Long memory and volatility have been used to measure risks associated with persistence in financial 
data sets. However, the persistence in volatility cannot be easily captured because some mathematical 
models are not able to detect these properties. To overcome this shortfall, this study develops a 
procedure to construct long-memory stochastic volatility (LMSV) model by using fractional Ornstein-
Uhlenbeck (fOU) process in financial time series to evaluate the degree of persistence property of the 
data. Procedures for constructing the LMSV model and the estimation methods were applied to the 
real daily index prices of FTSE Bursa Malaysia KLCI over a period of 20 years. The least square 
estimator (LSE) and quadratic generalised variations (QGV) methods were used to estimate the drift 
and diffusion coefficient of the volatility process respectively. The long memory parameter was 
estimated by the detrended fluctuation analysis (DFA) method. The findings show that the volatility of 
the index prices exhibited a long memory process but the returns of the index prices did not show 
strong persistence properties. The root mean square errors (RMSE) obtained from various methods 
indicated that the performances of the model and estimators in describing returns of the index prices 
were good. 

Keywords Long memory stochastic volatility, fractional Ornstein-Uhlenbeck, least square estimator, 
quadratic generalized variations; detrended fluctuation analysis 

© 2017 Penerbit UTM Press. All rights reserved 

INTRODUCTION 

A typical financial time series of returns has many common 

empirical properties or so-called “stylized facts”, such as excess 

kurtosis, volatility clustering and almost no serial correlation in the 

level but with a persistent correlation in the squared returns and 

absolute returns, which can be explained by an appropriate volatility 

model. The volatility of the prices has significant influence on the 

dynamics of the financial time series. The very first success and famous 

mathematical option pricing model namely the Black-Scholes option 

pricing model which assumed that the volatility is constant had been 

argued by many studies [1, 2]. The constant volatility assumption is 

inconsistent with the empirical observation of varying volatility across 

different times. Volatility is an essential factor in measuring the 

variability in price movements. This is because volatility is affected by 

unpredictable changes such as the performance of the industry, political 

stability of a particular country, news about new technology, natural 

disaster, product recalls and lawsuits that shall have both positive and 

negative impacts to the relevant company stocks. Thus, an appropriate 

model for volatility will help to improve the measurement and provide 

useful information to the investors and economist. 

Over the past two decades, many stochastic volatility (SV) models 

and estimation methods have been introduced to explain the market 

tendency. Stochastic volatility models have become popular for 

derivative pricing and hedging since the existence of a non-constant 

volatility surface has been classified. Recent studies have shown that 

some of the financial data exhibit the properties of long-range 

dependence. However, these properties cannot be captured by the 

ordinary stochastic models. 

The long memory in the volatility of the financial data had been 

discovered in the early 1990s. Ding, Granger [3] were among the first 

to investigate that there is a strong correlation between absolute returns 

of the daily S&P 500 index prices. The fractional power 

transformations of the absolute returns showed high autocorrelations 

for high lags which provide the evidence of long-range dependence [4-

6]. Besides that, the long term correlation is also found in the squared 

returns on various financial markets [7-9]. 

The early study of SV models was mainly focusing on short 

memory volatility process. The long memory stochastic volatility 

(LMSV) model which is appropriate for describing series of financial 

returns at equally-spaced intervals of time had received extensive 

attention for the last few years. Breidt, Crato [10] and Harvey [11]were 

among the first who suggested that a long memory stochastic volatility 

(LMSV) in discrete time where the log-volatility is modeled as an 

autoregressive fractional integrated moving average (ARFIMA) 

process. Comte and Renault [12] proposed a continuous time fractional 

stochastic volatility model which adopts the fractional Brownian 

motion to replace the Brownian motion. 

The estimation of the volatility process is one of the most difficult 

and complicated problems in econometrics. There are no ideal volatility 

simulation techniques or volatility data collections. The main 

difficulties is the fact that volatility itself is never directly observed. 

Therefore, in practice, one would be restricted to use the values of asset 

at discrete time even for the most liquid indexes or assets. Thus, we 
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propose a procedure to estimate the volatility process of the financial 

data series. In this study, a long memory stochastic volatility model will 

be constructed in the state space form using fractional Ornstein-

Uhlenbeck process that can capture the characteristic observed in the 

financial time series. The LMSV model is more flexible assuming the 

volatility follows an autonomous and latent stochastic process. This 

model can provide a useful way of modeling the relationship between 

the returns and the volatility of the series exhibiting strong persistence 

in its level yet with varying time. The estimated parameters on drift, 

diffusion coefficient and Hurst parameter in the model are practically 

useful for investor to have a clear picture on characteristics of the index 

prices. This study aims to determine the properties of FTSE Bursa 

Malaysia KLCI index prices via the long memory stochastic volatility 

models to solve the problem of excessive persistence in the composite 

linear and nonlinear models by introducing a probabilistic approach in 

allowing different volatility states in time series.  

METHODOLOGY 

This section introduces the modeling and parameters estimation of 

long memory stochastic volatility. First, the LMSV model specification 

is presented. Next, the methods for testing the existence of long 

memory are discussed. Then, the methods of parameters estimation on 

the drift and diffusion coefficient of the volatility process in LMSV 

models are also discussed. Lastly, the performance of the model and 

parameters estimation methods are assessed. 

LMSV Model specification  
Using existing approach, assume that is a complete probability 

space. The long memory stochastic volatility model can be specified in 

the state space form, as follows: 

t t tX k          2~ (0, )t nN                             (1) 

H

t t tdY Y dt dB                             (2) 

where  is the series of returns at time t,  given 

and k is a constant coefficient. The  is mutually 

independent Gaussian white noise process with variance,  The 

volatility process is modelled to follow th e 

fractional Ornstein-Unlenbeck process (fOU), where is the drift, β 

is the volatility of the volatility, and  is the fractional Brownian motion 

with Hurst index . The fractional Brownian motion, 

has stationary increments which imply that

, and this relation defines its covariance 

structure:   

          (3) 

Thus, for 
1

2
H  the fOU process is neither Markovian nor 

semimartingale but still remains Gaussian and ergodic. For  

the fOU process will exhibit long memory property.  

Equation (2.2) can be explicated 

( )

0
0

,
t

t t s H

t sY y e e dB         0,t       
0 0.X x          (4)      

                         

Let (𝐵𝑡
𝐻)𝑡∈ℝ be a fractional Brownian motion with  and

0

0 ( ).y L    Let and , 0.   Then for all 

, exist as a Riemann-Stieltjes path-

wise integral which is almost surely continuous in t, and 

0,

0
0

: ( ),
t

H y t s H

t sZ e y e dB           

the unique almost surely continuous process that solves equation (4). In 

particular, the restriction to positive t’s of the almost surely continuous 

process  

( ): ),
t

H t s H

t sZ e dB  


         𝑡 ∈ ℝ,           

solves (2.4) with initial condition 
0 0 .Hy Z Clearly, the ( )H

t tZ R
is 

a Gaussian process that follows the stationarity of the increments of 

fractional Brownian motion that it is stationary. In addition, for every 

initial condition
0

0 ( )y L  as in the Brownian motion case, 

0,

0 0( ) 0,
H xH t H

t tZ Z e Z y      as    almost surely, 

which implies that every stationary solution of (2.4) has the same 

distribution as 
0( ) .H

t tZ 
The 0,

0( )
H x

t tZ 
is mentioned as a 

fractional Ornstein-Uhlenbeck process with initial condition 0y and 

( )H

t tZ 
a stationary fractional Ornstein-Uhlenbeck process where 

( )H

t tZ 
is ergodic, and it exhibits as long range dependence for 

1
.

2
H  Due to the fact that one can estimate and  without 

having the knowledge on  the procedure to estimate the unknown 

parameter will be carried out in several steps. The 

theorem of the covariance of the fOU is shown in Appendix A. 

Estimation on long memory using Detrended Fluctuation 
Analysis 

Peng, Buldyrev [13] proposed the detrended fluctuation analysis 

(DFA) to examine the long range power law correlation of DNA 

nucleotides. DFA employs measurements of dispersion which take the 

squared fluctuations around the trend of time series. DFA is used to 

estimate power law scaling (Hurst exponent, H) of a series in the 

presence of nonstationary, besides eliminating spurious detection of 

long-range dependence. Detrending operation performed on the sub 

period gives protection against nonstationaries effect. However, DFA 

is also an ideal method to investigate both long-range and short range 

correlation in stationary and non-stationary series. The steps of DFA 

method are as follows: 

1. Integrate the time series (with N samples) to be analysed. 

Next, the integrated time series is divided into n non-

overlapping segments. 

2. Calculate the local trend, 
( )ny k

for each of the segments 

using least-square regression. Next, we detrend the integrated 

time series, ( )y k , by subtracting the local trend, ( )ny k , in 

each segmentation. The root-mean-square fluctuation of this 

integrated and detrended time series is calculated by 

2

1

1
( ) [ ( ) ( )]

N

n

k

F n y k y k
N 

     (5) 

where N is the total of sample size. 

This process is repeated for the whole signal at a range of different 

window sizes n, and a log-log graph of n against F(n) is constructed to 

test the self-similarity (fractal properties). A linear relationship on a 

log-log plot indicates the presence of power law scaling. Then, the 

fluctuations are characterized by a scaling exponent, , which is 

calculated as the slope of a straight line is related to log F(n) against 

log n. 
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 ( )F n Cn                          

        

log ( ) log logF n n C 

             
where C is constant. The scaling exponent is a measure of 

correlation in the noise and simply represents the estimation of Hurst 

exponent, H. When , it shows the properties of fractional 

Brownian motion. The values of scaling exponent,  which explain the 

series of self-correlations are summarised in Error! Reference source 

not found.. 

Table 1 Summary of scaling exponent, . 

0 0.5  anti-correlated sequence 

 = 0.5 Uncorrelated sequence ,white noise 

0.5 1 
correlated sequence, long range 

power-law correlation 

 = 1 1/ f noise (pink noise) 

1 
non-stationary, correlation exists but 

not to be of a power-law form 

 = 1.5 
Brownian noise (integral of white 

noise) 

Bardet and Kammoun [14] suggested the asymptotic properties of DFA 

for the fractional Gaussian noise which are also extended to a general 

class of stationary long range dependent processes. The asymptotic 

behaviour of the DFA for the FGN can be written as  

𝐹(𝑛) ≃ 𝑐(𝜎, 𝐻). 𝑛𝐻, 

where c is a positive function and depends only on  and H. They 

claimed that the estimator of the long range dependence parameter is 

convergent with reasonable convergence rate in the semi-parametric 

frame of long memory stationary process but do not converge in 

numerous cases of trended long range dependent process. In addition, 

Løvsletten [15] had showed the consistency of detrended fluctuation 

analysis where the scaling function 𝐹(𝑛)~𝑛𝐻 for both stationary 

stochastic process with 0 1,H  and non-stationary processes with 

1 2.H 

Drift estimation on the volatility process using least square 
estimator  

The least square estimator was used to estimate the drift parameter, 

as in Equation (2.2). By considering that Equation (2.4) is driven by 

fBm,  with .   Let and then the solution is 

given as  

            (6) 

The estimation of the can be done without the knowledge on both H 

and . Hu and Nualart [16] proposed the least square estimator as  

                                                                  (7) 

where  is a divergence-type integral (see Biagini, Hu [17] 

and Duncan, Hu [18]). The alternative expression for  is provided 

as  

Consequently, the authors showed that 

Therefore, the estimator of   is given as  

                      

     (8) 

where   is the empirical moment of order 2, given as 

The asymptotic distribution is given in Appendix 

B. 

Diffusion Coefficient Estimation on the Volatility Process 
using Quadratic Generalized Variations 

Diffusion coefficient,  in the discretely observed fractional 

Ornstein-Uhlenbeck process can be estimated using quadratic 

generalized variations (QGV).  In this section, the Hurst exponent, H 

can be alternatively estimated simultaneously with the diffusion 

coefficient, as follows:  

Let be a discrete filter of  𝐾 ∈ ℕ, with order

, i.e. 

  for      and    

0

0
K

L

k

k

a k


   

which can be normalised as   The expanded filter 

associated to will be considered as  

                         for       

Since is filtered similar to Istas and 

Lang [19] showed that the generalized quadratic variations associated 

to the filter  are denoted as 

Consequently, denote 

Then, the estimator of H and    can be defined as follows: 

                                                      (9) 

and 
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(10) 

The asymptotic distribution is shown in Appendix C. 

Simulation of LMSV model 

After estimating all the parameters, in the model is 

based on the real data, the Monte Carlo simulation method was 

employed to simulate the path of LMSV process.  The sequence of the 

LMSV process as proposed by Euler Maruyama discretization in 

Equation (1) and Equation (2) is defined below:   

              (11) 

     (12)        

The following algorithm can be used to show the numerical illustrations 

of the LMSV model on the real data of FTSE Bursa Malaysia KLCI 

index prices 

Step 1: Generate stationary fractional Gaussian noise via fast Fourier 

transform and obtain the fractional Brownian motion, where fBm is 

defined as partial sum of fGn. 

Step 2: Simulate the process  as in Eq. (12) using Euler-

Maruyama method for different values of ,  and for fixed 

length  of samples particles,   

Step 3: A sample path of p=100 is simulated. Then, the average of each 

point of the sample path will be taken.  

Step 4: Generate Gaussian white noise. Then, the processes  are 

simulated using the result of  for different values of k with 

assumption that   

Step 5: Calculate the root mean square error (RMSE) between the 

estimated returns (the processes of ) and the empirical returns (log 

returns).  

RESULTS AND DISCUSSION 
This section discusses the FTSE Bursa Malaysia KLCI index prices 

data and its transformation. Then, there is a discussion on the results of 

the parameters estimation on the LMSV model. Lastly, the numerical 

illustration on the LMSV model is presented by comparing the 

empirical returns with estimated returns. 

Fig. 1 Index prices of FTSE Bursa Malaysia KLCI (3rd December 1993- 
31st December 2013) and ACF. 

Data Description and Transformation 
The historical prices of FTSE Bursa Malaysia KLCI, beginning 

from 3rd December 1993 until 31st December 2013, containing 4954 

data, were analyzed through graphical representation of the time series 

data which was carried out using the scatter plot. 

Figure 1 shows the closing index prices of FTSE Bursa Malaysia 

KLCI which were volatile during this period. The index prices 

decreased sharply and reached the lowest point at 262.7 on 1st 

September 1998. It might be due to the implementation of exchange 

control on 1st September 1998. The index prices fell sharply again after 

the burst of the U.S. housing bubble in year 2008. Nevertheless, the 

trend of index prices from May 2009 started to pick up and eventually 

surpassed 1872.52 points in December 2013, which was the highest 

point among these periods. Meanwhile, the autocorrelation plot of the 

closing index prices shows it decayed rather quickly along the period.  

Table 2 shows the statistical properties of the index prices of FTSE 

Bursa Malaysia KLCI. It can be observed that the value of standard 

deviation is very high which indicates that the fluctuation of the price 

is very volatile. The positive value of the skewness indicates that the 

distribution is right-skewed, which can also be interpreted that the mass 

of the distribution is concentrated on the right. The positive kurtosis 

shows a leptokurtic condition, which has a more significant peak 

around the mean and fatter tails than normal. This phenomenon 

indicates that the inflation rate was higher than expected during that 

period. 

Table 2  Descriptive statistics of index prices. 

Mean 1037.53 

Median 966.83 

Standard deviation 339.0608 

Skewness 0.4368 

Kurtosis 2.4183 

From the plot as shown in Figure 1, it is easy to recognize the 

apparent trend where the prices may be non-stationary. Usually, the 

common practice in handling financial data analysis is to construct 

stationary processes. Box and Jenkins [20] suggested that a non-

stationary time series can often be made stationary by differencing the 

series until stationarity is reached. Analysis on the difference of the 

logarithm of the closing index prices, which is also known as returns or 

sometimes simply returns, is carried out as explained below.  

The following part explains how data is transformed into a 

logarithmic form to achieve weakly stationary time series. Analysis is 

conducted on different logarithmic of  closing index prices, known as 

returns. Relatively, the proxies of volatility are represented by the 

absolute returns and squared of returns. Consequently, their descriptive 

statistics and their autocorrelation will be evaluated. The 

autocorrelation function (ACF) is applied to provide preliminary 

information corresponding to the internal organisation of each time 

series data. As stated by Beran [21], a long memory process is a 

stationary process with a hyperbolically decaying autocorrelation 

function. 

Accordingly, the returns is defined as 

     (13) 

where  is the returns and  is the closing index 

prices of FTSE Bursa Malaysia KLCI. Next, the statistical properties of 

the data were analysed based on their mean, standard deviation, 

skewness, kurtosis and coefficient of variation (CV). CV is the ratio of 

the standard deviation to the mean, which is a statistical measure of the 

distribution of data points in a series around the mean. The CV 

measures how far away the data is from the mean. Series with 1CV 

are considered to have low-variability, whereas those with 1CV  are 

considered to have high variability. 
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Table3 Descriptive statistics for the series of   and  

Fig. 2 The returns of the FTSE Bursa Malaysia KLCI index and ACF 

Fig. 3 The proxies of volatilities of the FTSE Bursa Malaysia KLCI index and ACF 

Table 3 summarizes the statistical properties for the series of 

and . From the results, it can be seen that the standard 

deviations for all data set were greater than the corresponding mean 

values. Therefore, the CV values were all greater than 1, indicating that 

the returns and the volatility of returns fluctuated significantly through 

time. All data sets presented positive values for skewness and kurtosis, 

which had the same statistical properties as the closing index price of 

FTSE Bursa Malaysia KLCI. However, the kurtosis of squared returns, 

showed an extreme high value, indicating that there was sharp 

peak around the mean with fatter tails distribution. 
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Figure 2 shows the plot of returns and its ACF, while, Figure 3 shows 

the plot of the proxies of volatilities and their ACF. Autocorrelation 

function provides a measure of temporal correlation between the time 

series data with different time lags. For a purely random process, all 

autocorrelation coefficients ρ shall be set to zero, except for ρ (0) which 

is equal to 1. If the variables of a time series are strongly correlated, it 

can be referred as series with long range dependence, generated by 

stochastic processes.  

As seen in Figure 2, the ACF plot shows a slightly correlated 

structure of the returns. The plots indicate that the returns were weakly 

stationary and perhaps as uncorrelated sequence (white noise). Thus, it 

is hard to determine if the series fulfilled the long memory property to 

describe the high-order correlation structure of a time series. However, 

there are some empirical evidences which claim that the volatility of 

the price may exhibit long memory [3, 10, 11, 22]. Ding, Granger [3] 

were among the first to observe that there is a substantial correlation 

between absolute returns of the daily S&P 500 index prices. Also, 

Breidt, Crato [10] and Lobato and Savin [23] found that long term 

correlation exist in the squared returns on various US indexes.

Therefore, absolute returns, and squared returns,  had been 

employed as the proxies for volatilities in our study.  

Figure 3 shows the plot of the volatilities and their ACF. 

Apparently, the autocorrelation plots in Figure 3 were positive 

correlated which could decay up to 200 long lags. The ACF plot of the 

absolute returns decayed slowly at hyperbolic rate. This can be 

considered as the main characteristic of long-range dependence 

appearance in time series data. However, the hyperbolic decay rate in 

the ACF plot of squared returns was not apparent. Thus, the following 

section will discuss the estimation of the long memory parameter and 

the parameters of the LMSV model.  

Parameters Estimation of the LMSV 
In this section, the DFA method is employed to estimate the long 

memory parameter which is also known as the Hurst parameter, H. 

Next, the drift and diffusion coefficient parameters of the volatility 

process which are constructed by the fOU model will be estimated 

using the LSE and the QGV methods respectively.   

Figure 4(a-c) present the plot of the magnitude of detrended 

fluctuations at different scales (window sizes: t) for ,tX | |tX and 
2

tX

whose scaling exponents were approximately 0.52, 0.76 and 0.67 

respectively. The results showed that the proxies of volatilities,  

and  exhibited as long memory where H>0.5. Meanwhile, the 

persistence of the long memory is not very obvious in the returns, 
tX

as 0.5.H 

(a)  Returns,  (b)  Absolute returns,  

(c)  Squared returns,  

Fig4(a-c) DFA plots with estimated Hurst Exponent for and  respectively 

Table 4 Parameters estimation of and  with known H and 

RMSE between simulated fOU process and data 

As shown by the results in Table 4, the value of the drift parameter 

indicates the volatility process was ergodic where  for our 

LMSV model as shown in Eq.2. Meanwhile, the diffusion coefficient 

of the volatilities had a quite small value, implying that the fluctuation 

of index prices was not very significant over the period. Therefore, it 

can be described that the FTSE Bursa Malaysia KLCI is not a high risk 

investment. Simulation of the fOU process using the parameter 

estimated had been conducted as well. The root mean square error 

(RMSE) between the simulated fOU process and the empirical data had 

also been calculated. The RMSE between the squared returns and its 

simulated fOU process was smaller than the absolute returns. This 

indicates that squared returns were more suitable to be chosen as the 

proxy of volatility for the estimation of the LMSV model. The 
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assessment of the LMSV model with the parameters estimated will be 

explained in the next section.    

Numerical illustrations of LMSV model 
This section explains the numerical simulation for different values 

of , and H to illustrate the performance of the estimators. The 

constant value, k had been selected empirically so that the simulated 

data from the LMSV model would be closer to the true values based on 

visual inspection. The estimation procedures by Monte Carlo 

simulation method are described in detail below.   

The method of circulant embedding proposed by Dietrich and 

Newsam [24] was applied to generate the stationary fractional Gaussian 

noise via fast Fourier transform. Then, the fBm was obtained, defined 

as partial sums of the fGn. The processes as in Equation (12) were 

simulated using Euler-Maruyama method for different values of , 

and H as shown in Table 4. Then, the processes as in Equation 

(11) were simulated using the result of for different values of k with 

assumption that  A sample path of p=100 were simulated for a 

fixed length  of samples particles, Then, the average of 

each point of each sample path was taken. The root mean square error 

(RMSE) between the simulated returns and the empirical returns was 

calculated to illustrate the performance between the estimators and the 

LMSV model.    

Table 5 Descriptive statistics of estimated returns, and the RMSE 
between estimated returns and empirical returns from | |tX with 

100p  . 

Table 6 Descriptive statistics of estimated returns, and the RMSE 

between estimated returns and empirical returns from 2

tX with 100p 

Table 5 and Table 6 show the results of root mean square using the 

parameters estimation from the absolute returns, | |tX and squared 

returns | |tX as proxies of volatility for a sample path of p=100 and 

different values of k, respectively. As shown in the results, the RMSEs 

between the estimated returns and the empirical returns were small. 

These results showed that the estimators applied in the LMSV model 

were good. The results also demonstrates the descriptive statistics 

which include mean, median, standard deviation, skewness and 

kurtosis. It is worth to notice that when 0.01k  , the values of mean and 

median of the estimated returns were closer to the empirical returns,

tX as shown in Table 3. Overall, the skewness and kurtosis of the 

estimated returns were different from the empirical returns. The value 

of skewness was near to 0 and the kurtosis of the estimated returns was 

smaller, indicating the peaks were not very significant around the mean 

and near normal distribution. This scenario might be due to the 

Gaussian white noise contained in the simulation of the estimated 

returns. When compared the absolute returns (Table 5) with square 

returns (Table 6), the volatility proxies for the estimation of the 

volatility process for our estimated returns showed only little difference 

between the results. This indicates that both proxies are suitable to be 

used for estimating the volatility process of the FTSE Bursa Malaysia 

KLCI index prices.  

Figure 5(a-d) illustrates the volatility process based on fOU model, 

which was estimated using 
tX for different constant, k with sample 

path, 100p  , and the comparison between the empirical returns and 

estimated returns. Meanwhile, Figure 6 (a-d) depicts the volatility 

process described by fOU model using 2

tX for different constant, k with 

sample path, 100,p  and the comparison between the empirical returns 

and estimated returns.  

a) k=0.01 

b) k=0.01 

c) k=0.1 
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 0.38476,     0.01932,     0.7637H 

p 100 

k 0.001 0.010 0.100 1.000 

Mean 52.1119 10 41.0802 10  -0.0034 0.0068 

Median 53.2332 10 41.0589 10  -0.0053 0.0133 

Standard 
Deviation 

49.9259 10 0.0098 0.0999 1.0002 

Skewness -0.0568 0.0449 0.0722 -0.0134 

Kurtosis 3.1196 2.9453 2.9966 2.9582 

RMSE 0.0151 0.0182 0.1010 1.0004 

 0.49944,     0.00215,     0.6671H 

p 100 

k 0.001 0.010 0.100 1.000 

Mean 67.0294 10  57.0289 10 46.9002 10 0.0069 

Median 69.1828 10  59.7787 10 0.0010 0.0100 

Standard 
Deviation 

0.0010 0.0100 0.0994 0.9943 

Skewness 0.0114 0.0017 0.0018 0.0018 

Kurtosis 3.0233 2.9450 3.0932 3.0932 

RMSE 0.0151 0.0178 0.1009 0.9947 
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d) k= 1 

Fig 5(a-d) FOU volatility process based on
tX , and the comparison 

between the empirical returns and estimated returns for different k 

a) k=0.001 

b) k=0.01 

c) k= 0.1 

d) k=1 

Fig 6(a-d) FOU volatility process based on 2

tX , and the comparison 

between the empirical returns and estimated returns for different k 

As shown by Figure 5(a-d) and Figure 6(a-d), when 0.01,k  the 

estimated returns followed the trend of empirical returns closely. It can 

be seen that the range of k value was close to the value of standard 

deviation of the empirical returns, where 0.015111.
tX  Therefore, 

the constant, k can be considered to replace with the 
tX in the LMSV 

model. 

CONCLUSION 

This study demonstrates that the volatility of financial time series 

is characterized by long memory behavior. The development of a 

general framework had been proposed for detection of long memory 

process on the financial time series of the FTSE Bursa Malaysia KLCI 

index prices for the period from 3rd December 1993 to 31st December 

2013. The procedures have been established to construct the LMSV 

model and the estimation methods are appropriate to explain the market 

tendency in Malaysia. This study presents the results of the estimated 

volatility process based on the proxies of volatilities, where the 

parameters of the LMSV model have been correspondingly estimated. 

The proposed LMSV model has been shown effective in modeling the 

behavior of the returns of FTSE Bursa Malaysia KLCI index prices.  
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APPENDICES 

Appendix A: Covariance of fOU [25] 

Theorem 2.1  

Let and 𝑁 ∈ ℤ+. Then for fixed 𝑡 ∈ ℝ and 

The next corollary which has been proven by Cheridito, Kawaguchi 

[25] shows that the solution 
,

0( )H x

t tY 
of  (4) with the deterministic 

value of 
,

0

H xY 𝑥 ∈ ℝ,
 

  for 

decays like a power function of the order  as well. 

Corollary 2.1 Let , 𝑥 ∈ ℝ and 𝑁 ∈ ℤ+. Then 

for fixed  and  

It is worth to notice that the decay of for  

it is very similar to the decay of  

, for  

      
  

Therefore, ( )H

t tY 
is ergodic, and it exhibits long range dependence 

for   

Appendix B: Asymptotic distribution of LSE 

Theorem 2.2: Let , as given by Eq 

(2.6), and a mesh condition and 

as  Then, as   

and  

where 

The proof of consistency and asymptotic distribution of the Least 

Squares Estimator had been studied by Hu and Nualart [16]. 

Appendix C: Asymptotic distribution of QGV 

Theorem 2.3:  Let  be a filter of order  As proposed by 

Brouste and Iacus [26], the strong consistency of both estimators  

and  is given as 

as  

For all  as  the asymptotical normality 

property is defined as 

And 

The  and  are symmetric definite positive matrices, 

which depend on and the filter , which are written as 
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