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Abstract 
 
The steady of two-dimensional convection boundary layer flow of viscoelastic nanofluid over a 
circular cylinder with constant wall temperature is investigated in this paper. Carboxymethyl cellulose 
solution-water (CMC-water) is chosen as the base fluid and copper as a nanoparticle with the Prandtl 
number Pr = 6.2. The governing boundary layer partial differential equations are transformed into 
dimensionless forms. Then the obtained equations are solved numerically by using the Keller-Box 
method. This paper focus on the effect of selected parameter on the flow and heat transfer 
characteristics and be presented in graphs. The results show that, the velocity profiles are increased 
while the temperature profiles are decreased by increasing the values of nanoparticles volume 
fraction and viscoelastic parameter, respectively. Also, the values of reduced skin friction are 
increased by increasing mixed convection parameter, but the values of heat transfer coefficient 
produce an opposite behavior with an increasing in mixed convection parameter. 
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INTRODUCTION 
 

The concept of nanofluid was first manifested by series of 

research at Argonne National Laboratory and Choi [1] was the first to 

call the fluids with particles of nanometer dimension suspended in 

them as “Nano-fluids” which has gained popularity. Nanoparticles 

used in nanofluids can be classified by materials. The nanoparticles 

are consisting of nano sized metals, oxides and carbon nanotubes. 

Recently, study of nanofluids has become most popular among 

researchers’ due to its various applications in many industries, 

engineering and medical sciences as well. Basically, this kind of fluid 

have extremely high thermal conductivities compared to the 

conventional liquids, then nanofluids have been proposed as a route 

for surpassing the performance of heat transfer liquids. Many 

researchers had involved in the study of boundary layer flow problem 

in nanofluids such as, Nield and Kuznetsov [2], Khan and Pop [3], 

Ahmad and Pop[4], Chamkha et al. [5] ,Qasim et al. [6], Zaib et al. [7] 

and Noghrehabadi et al. [8]. Recently, Sabir et al. [9] investigated 

mixed convection flow of viscoelastic nanofluid by a cylinder with 

variable thermal conductivity and heat source/sink. In reality, most 

fluids are non-Newtonian. Non-Newtonian fluid means that their 

viscosity is dependent on shear rate (thickening) or the deformation 

history. Nowadays, the non-Newtonian nanofluids have received 

much considerable interest and concern by the researchers’ due to the 

potential of nanofluids applications in many types of industry. Rawi et 

al. [10], Mabood et al. [11], Sarkar et al. [12], and Bouchoucha and 

Bessaih [13] have been considered some interesting studies involving 

the non-Newtonian nanofluids with various conditions and geometries 

have been considered. Motivated by the above-mentioned studies, this 

paper considers the steady of two-dimensional mixed convection 

boundary layer flow past a horizontal circular cylinder in viscoelastic 

nanofluid with constant wall temperature.The Tiwari and Das model 

[14] was used in this study. To the best of our knowledge, this 

problem has never been considered before and the results reported 

here are new. The influence of relevant parameters on the 

dimensionless fluid velocity, the temperature, the nanoparticle volume 

fraction, the rate of heat transfer, and the rate of skin friction 

coefficients are investigated and shown graphically and discussed.   

 

 

MATHEMATICAL FORMULATION 
 

 
Fig.1 Physical model and coordinate system. 

In this paper, the steady mixed convection boundary layer flow past 

an isothermal horizontal circular cylinder of radius a placed in a 

viscoelastic nanofluid is studied. Fig.1 illustrates the geometry of the 

problem and the corresponding coordinate system. It is assumed that 
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the constant temperature of the surface of the cylinder is 
wT , and that 

of the ambient fluid is T
, where 

wT T corresponds to a heated 

cylinder (assisting flow) and 
wT T corresponds to a cooled 

cylinder (opposing flow), respectively. It is also assumed that the 

viscous dissipation is neglected. Further, following Merkin [15], we 

assume that the velocity of the freestream is  1 2 U . Under these 

assumptions along with the Boussinesq approximation, the boundary 

layer equations can be written as follows, Merkin [15], Nazar [16]; 
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subjected to the boundary conditions:     

0,u  0,v 
wT T      at 0,y  0,x 

 ,eu u x 0,
u

y





T T as ,y  0,x     (4) 

where x and y are the Cartesian coordinates along the surface of 

the cylinder. The value is starting from the lower stagnation point of 

the cylinder. While y is the coordinate measured normal to the 

surface of the cylinder, u and v are the velocity components, 

 eu x is the velocity outside the boundary layer, T is the 

temperature of selected fluid,  0 0k  is the constant of the 

viscoelastic material with 0 0k  , nf and nfμ are the density and 

dynamic viscosity of nanofluid,  
nf

β is the thermal expansion of 

nanofluid, nfk is the effective thermal conductivity of the nanofluid 

and  p nf
ρC is the heat capacitance of nanofluid. These nanofluid 

constants are defined by, 
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where  is the nanoparticle volume fraction of the nanofluid. The 

thermophysical properties of nanoparticles and base fluid is given in 

Table 1 [17].  

Table 1 Thermophysical properties of nanoparticles and base fluid. 

Physical Properties CMC-water Cu 

 3kg m 
997.1 8933 

 1 1J kg KpC  
4179 385 

 1 1Wm Kk  
0.613 401 

 5 110 K  21 1.67 

By introducing the following non-dimensional variables; 

,x x a     1 2Re ,y y a    ,u u U     

 1 2Re ,v v U     / ,e eu x u x U    / wT T T T            (6) 

where Re U a v is the Reynolds number. By substitution equation 

(6) into equations (1)-(3), the dimensionless equations becomes, 
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with the boundary conditions, 

0,u  0,v  1  at  0,y  0,x 

 ,eu u x 0,
u

y





0  as ,y 0,x            (10) 

where Pr is the Prandtl number, K known as dimensionless 

viscoelastic parameter and   is known as constant mixed convection 

parameter, that are defined by, 
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k U
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,
Re

Gr
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where   3 2/wGr g T T a v   is also known as a Grashof number. 

0  is correlate to an auxiliary flow while 0  is correlate to the 

opposing flow. But 0  is correlate to the forced convection flow, 

respectively. In this problem, if 0K  it is referring to the case of 

viscous (Newtonian) fluids. 

Further, we introduce now the stream function defined as usual as; 

 , ,xF x y   , ,x y            (12) 

where  is the stream function that define as, 
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          (13) 
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Using (12) and (13) into equations (8) and (9) to obtain, 
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which are subject to the following boundary conditions; 
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The physical quantities interest of this problem is the wall 

temperature distribution  w x  and the skin friction coefficient fC , 

that are defined as, 
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where w  is the shear stress or skin friction while wq  is the heat flux 

from the surface of cylinder [1], that are given by  
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and it is known that   is for dynamic viscosity while k  is for 

thermal conductivity. By substitution of (6), (17) and (18), obtained  
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 When 0x  , in the case of lower stagnation point, introduced the 

similarity variable  xf  ,      and   as per below. Thus, it can 

be shown that equations (7)-(9) diminish to the ordinary differential 

equations as: 
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and the boundary condition (9) as 

 

   0 0,f    0 0,f     0 1,   

 

   1,f       0,f       0,            (22) 

 
In this case, obtained 

 

 0 ,fC xf       0 0 .w              (23) 

 

The present study in equations (20)-(21) reduces to that of Nazar et al. 

[16] and Anwar et al. [18] for a viscoelastic fluid when 0   (regular 

fluid). 

 

RESULTS AND DISCUSSION 

 
Both equations (14-15) with the boundary conditions (16), and the 

ordinary differential equations (20-21) with the boundary conditions 

(22) that were solved numerically using the Keller-box method. The 

effect of different values of the previous parameters on the velocity 

profiles, temperature profiles, reduced skin friction and heat transfer 

coefficients are reviewed in particularly. 

Figures 2 and 3 show the comparison of the present results for the 

skin friction coefficient 
fC  and the heat transfer from the cylinder 

w  with Nazar et al. [16] for a Newtonian fluid (K=0) with no 

nanofluid effects and Pr=1. It shows that the numerical solutions 

obtained by the present authors are in good agreement with Nazar et 

al. [16]. Thus, we confident that the present results are very accurate. 

Figures 4 and 5 show the local skin friction 
fC  and local heat 

transfer w for K=1, Pr=6.2 and various values of   with the 

presence of nanoparticle volume fraction when 0.05  . From the 

graph, it shows that by the presence of nanoparticle volume fraction 

 , the value of local skin friction is increased by increasing mixed 

convection parameter. The results show the same behavior for heat 

transfer coefficient where the value of w  is increased by increasing 

the values of  .  

 
Fig. 2 Comparison of the local skin friction 

fC  for K=0 (Newtonian 

fluid), Pr=1, 0   and various of   



Mahat et al. / Malaysian Journal of Fundamental and Applied Sciences
Special Issue on Some Advances in Industrial and Applied Mathematics (2017) 310-314 

313 

Fig.3 Comparison of the local heat transfer w for K=0 (Newtonian 

fluid), Pr=1, 0  and various of 

Fig.4  Local skin friction 
fC for K=1, Pr=6.2, 0.05  and various of 

Fig.5 Local heat transfer w for K=1, Pr=6.2, 0.05  and various of 

Further, Figures 6 and 7 show the local skin friction local skin 

friction 
fC and local heat transfer w with the same value of 

parameter but different value of nanoparticle volume fraction, which 

is 0.2  . The same trend behavior is obverse as in Figures 4 and 5. 

Finally, Figures 8 to 11 illustrate the velocity and temperature profiles 

of the cylinder against y for the values of mixed convection parameter 

1.5   (opposing flow) and 1  (assisting flow) when 1K  , 

Pr 6.2 but with different values of nanoparticle volume fraction ,

which are varies from 0 0.2  . These figures show how the 

nanoparticle volume fraction  affects the fluid velocity and 

temperature profiles. Thus, from the graph, both velocity and 

temperature profiles are increased by increasing the values of 

nanoparticles volume fraction  and mixed convection parameter  . 

Fig.6 Local skin friction 
fC for K=1, Pr=6.2, 0.2  and various of 

Fig.7 Local heat transfer w for K=1, Pr=6.2, 0.2  and various of 

Fig.8 Velocity profiles for variety values of nanoparticle volume fraction 

 for K=1, Pr=6.2, 1.5  (opposing flow) 

Fig.9 Temperature profiles for variety values of nanoparticle volume 

fraction  for K=1, Pr=6.2, 1.5  (opposing flow) 

http://www.foxitsoftware.com/shopping
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Fig.10 Velocity profiles for variety values of nanoparticle volume 

fraction  for K=1, Pr=6.2, 1  (assisting flow) 

Fig.11 Temperature profiles for variety values of nanoparticle volume 

fraction  for K=1, Pr=6.2, 1  (assisting flow) 

CONCLUSION 

Steady of mixed convection boundary layer flow of viscoelastic 

nanofluids past a horizontal circular cylinder with a case of constant 

wall temperature problem has been solved numerically using Keller-

box method. The numerical results for the skin friction, heat transfer 

coefficient, velocity and temperature profiles are presented for variety 

values of nanoparticles volume fraction, mixed convection parameter 

and viscoelastic parameter. The effect of velocity and temperature 

profiles due to the influence of nanoparticles volume fraction and 

mixed convection parameters are also analysed. The comparison of 

the results show that the present results agree very well with the 

previous published results reported by Nazar et al. [16] and Anwar et 

al. [18]. 
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