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Abstract 

Mathematical modelling of blood flow is developed by treating blood as a Newtonian fluid. In this study, 

stenosis has been accounted as an overlapping shaped in two-dimensional Cartesian coordinate 

system. Blood is assumed as steady laminar flow, fully developed and incompressible which flowing 

through an arterial bifurcation where the wall considered rigid with no-slip condition. Galerkin weighted 

residual method is performed and a Matlab code is developed to solve the problem. To validate the 

code, comparison has been made with the results obtained by COMSOL Multiphysics. Results on the 

velocity profiles and the streamlines pattern are observed and discussed in details. 
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INTRODUCTION 

Numerous studies on the hemodynamic characteristics of blood 

flow in a stenotic vessels has been performed widely among the 

researchers not only in a single arterial geometry but also in a bifurcated 

artery to gain a better understanding on its pathological mechanism. It 

does not only provide a better insight to the researchers on how blood 

was distributed through the arteries but it also does helps doctor in the 

treatment predictions in order to provide a better cure to the patient [1]. 

Partial occlusion in blood vessels or better known as stenosis formed as 

a results of cholesterols, fats and smooth muscle cells accumulation in 

the arterial wall [2]. Stenosis is a localized plaque that narrowed the 

vessel walls causing a major alterations in the flow structure which 

consequently reduced the fluid flow passing to the other organs and 

tissues [3]. As the stenosis continues to enlarged and stimulated the 

development of a blood clot or a “vulnerable plaque”, plaque which is 

prone to rupture, an individual is exposed to the risk of cardiovascular 

diseases such as stroke and heart attack [1,4-5]. Regions with high 

curvatures and bifurcations are the most favored sites predisposed to 

this plaque localization [3]. This preferential localization of 

atherosclerosis occurred because of the alteration of vessels geometry 

which involve an immediate variation in the cross sectional area of 

vessels and the existence of curvature of the artery [6]. Both the vessels 

geometry and various biomechanical factors influence the pattern of 

blood flow and might be responsible for the genesis and progression of 

this disease [7]. The properties of blood is majorly influenced by the 

hematocrit distribution since red blood cells comprised about 99% the 

majority of formed elements suspended in the plasma [8]. Hence, the 

aggregation and deformation properties of red blood cells dominate the 

viscous effects of blood as well as its flow. According to Bose and 

Banerjee [9], in a large diameter artery with shear rates greater than 
1100s , the representation of blood as a Newtonian fluid is acceptable 

since the non-Newtonian properties are not significant in this region 

[10]. Chakravarty and Mandal [11] reported that the blood flow is 

affected considerably by the overlapping shaped stenosis where the 

peaks of the velocity distributions was observed at the overlapping 

region. As far as we know, only a few literatures are concerned on study 

related to the stenotic artery with an overlapping shaped stenosis [12]. 

Therefore, a study on a more realistic constrictions like an irregular, 

overlapping and a multiple stenosis is required. 

Motivated by all those studies mentioned, we propose to examine 

the steady laminar flow through a bifurcated artery with the presence 

of an overlapping shaped stenosis. The streaming blood is characterised 

by the Newtonian fluid model. The consideration of blood vessel as a 

rigid wall is reasonable since the wall of the diseased arteries are less 

compliant [13]. The solution is obtained numerically by implementing 

FEM analysis where the discretization of the governing equations is 

carried out by using Galerkin weighted residual (GWR) method. FEM 

is chosen instead of any other method since it is a numerical tools that 

work effectively within arbitrary geometries [14] subject to initial and 

boundary conditions [13]. Numerical computation will be performed 

based on the developed algorithms in Matlab software that will be 

validated using simulations obtained from COMSOL Multiphysics 5.2, 

a software based on the FEM. In this paper, a detailed evaluation on 

one of the biomechanical factors that may be responsible for this 

disease progression which is flow velocity will be performed and 

discussed in details. 

PROBLEM FORMULATION 

In order to formulate the computational domain for the stenosed 

bifurcated artery, these following assumptions are imposed :  
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1. The artery forming bifurcation is of finite length.  

2. The parent aorta possesses a single overlapping shaped 

stenosis in its lumen. 

3. Curvatures are introduced at the lateral junctions and the flow 

divider of the arterial bifurcation to ensure that one can rule 

out the presence of any discontinuity causing non-existent of 

separation zones. 

Model construction 
The geometry of the stenosed bifurcated artery is modelled as a 

bifurcated channel as proposed by Chakravarty and Mandal [15]. 

However, in this study an overlapping shaped stenosis described by 

Chakravarty and Mandal [11] is considered instead of a mild shaped 

stenosis as shown in Fig. 1. 

Fig. 1  The geometry of an overlapping stenosis in the bifurcated artery. 

Let  ,x y be the coordinates of a material point where the x -axis 

is taken along the axis of the trunk while the y -axis is taken along the 

y direction. The geometry of the bifurcated artery in the presence of 

an overlapping shaped stenosis may be set up mathematically of which 

the outer wall geometry is described by 
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On the other hand, the inner wall of geometry can be specified as 
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where  1R x and  2R x represent the radii of the outer and inner wall, 

respectively. Meanwhile, a and 
1r are the respective radii of the 

mother and daughter artery. 
0r and '

0r are the radii of curvature for the 

lateral junction and the flow divider, respectively. Whereas, 
0l is the 

length of the stenosis at a distance d from the origin. Location of the 

onset and offset of the lateral junction are denoted by 
1x and 

2 ,x

respectively. 
3x indicated as the apex, 

m represents the maximum 

height of stenosis occur at 
0 6d l and 

05 6d l while β denote half 

of the bifurcation angle. Parameters involved in the above expressions 

(1) and (2) may be given as 
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where q is taken as a small number lying in the range of 

0.0001 0.0005q  chosen for the compatibility of the geometry and 

 '

4 3 0 1 sin .x x r   

Governing equations 
The blood flow in the arterial bifurcation is considered to be in two 

dimensional, steady, laminar, and incompressible where the rheological 

characteristics of the flowing blood is characterised by a Newtonian 

fluid model. Hence, the equations that govern such flow may be written 

as 
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where u and v represents the velocity of blood in x and y directions, 

respectively.  is the density of blood,  is the viscosity of blood 

and p is the pressure distribution acting on the surface. 

Boundary conditions 
At the inlet, a parabolic velocity profile is assumed corresponding to a 

fully developed flow given by 

2

max 2
( , ) 1

y
u x y u

a

 
  

 
and ( , ) 0,v x y  at 0,x  and 

.a y a  

Along all the arterial walls, the usual no-slip conditions are prescribed 

as  

( , ) 0,  ( , ) 0.u x y v x y 

At the outlets, a traction-free condition with no tangential and normal 

forces is applied which can be stated as 

  0,p    n (6) 

where  is the stress tensor and n represents a unit outward normal 

vector. 

Bubnov-Galerkin weighted residual (GWR) method 
To transform the differential equations, (Eqs. (3)–(5)) into a system 

of algebraic equations, the spatial discretization of the governing 
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equations are performed using the Bubnov-Galerkin weighted residual 

(GWR) method. These spatial discretization are employed to the 

interpolate velocity  ,u vu and pressure p by using the 

unstructured six nodal triangular elements. The spatial variation for the 

velocity components ,  u v and the pressure, p are approximated by 

appropriate quadratic shaped function, ( , )iN x y and linear shaped 

function,  ,iP x y , respectively which may be elucidated as follow 

,  ,  ,  
n n m

i i i i i ii i i
u N u v N v p P p    

where 6,  3n m  choosen to represents the number of nodes defined 

for velocity and pressure components, respectively. The previous 

definitions (Eqs. (3)-(5)) represent the strong form ( governing 

differential equations along with natural and essential boundary 

conditions that must be satisfy at every point over a domain) of the 

governing equations. To derive the weak form (condition that the 

solution should satisfy in an integral form with reduced order of 

derivatives) for the system of governing equations, we utilized the 

GWR method by weighting the continuity and momentum equations 

with the appropriate weighting functions, 
j

P and 
k

N , respectively. 

Then, the sum of integration of the resulting equations over each 

element is equated to zero. Next, integration by part is conducted onto 

the pressure and viscous terms by applying the product rule for 

differentiation along with the divergence theorem of Gauss to reduces 

the differential order. Hence, the system of governing equations (Eqs. 

(3)-(5)) become as follow 
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where 1,2,3j  and 1,2,3,4,5,6k  while dA dxdy . While, en

indicates the total number of elements. On the other hand, the right hand 

side term for Eqs. (8) and (9) can be clarifed as  
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The above equations, (Eqs. (7)-(9)) can also be written in the matrix 

and vector forms which yield 
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e e e

= ,k u b (11) 

where  
e

k represent the local stiffness matrix, while  
e

u and  
e

b

respectively termed as the local vector degree of freedom and the local 

load vector. Note that,  
e

b are the boundary terms which appeared 

from the integration by parts procedure as Eq. (10). In an expanded 

matrix form, matrix (11) can also be represented as 
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where u and v that appeared in Eqs. (8) and (9) are considered to be 

constants when the matrices are being formulated. While, for the 

coeeficient of the vector 
1 ,eb 2

eb and 
3

eb which emerged on the right 

hand side of matrix (12) due to the neumann boundary conditions 

imposed and by Eq. (6) they may have these form 

1 0,e

cxb B 

2 0,e

cyb B 

3 0.eb 

To evaluate the integrals, the numerical integration technique called 

Gaussian quadrature will be adopted after all elements have been 

assembled forming a global fluid matrix version of equation (12) as 

follow 

    ,K U B (13) 

where  K ,  U and  B are the global stiffness matrix, global vector 

degree of freedom and global load vector, respectively. 

Computational mesh 
Mesh dependency test was performed to ensure the results obtained 

were not depended on the mesh parameters. Several attempts has been 

made and only few of them is mentioned here. The number of domain 

elements computed using COMSOL Multiphysics and Matlab are 

summarised in Table 1. 

Table 1  Mesh parameters computed in COMSOL Multiphysics and 
Matlab. 

Software Parameter Domain elements 

COMSOL 

Multiphysics 

Mesh 1 20153 

Mesh 2 24067 

Mesh 3 30896 

Matlab 

Mesh 1 15958 

Mesh 2 19234 

Mesh 3 23432 

Mesh 4 27566 
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Fig. 2 illustrates the axial velocity profiles for various number of mesh 

evaluated at the center of a mild shaped of stenosis computed using 

COMSOL Multiphysics and Matlab, respectively. 

Fig. 2  Axial velocity profiles for different number of domain elements at 

0.0125mx  evaluated using (a) COMSOL Multiphysics and (b) Matlab 

Based on the mesh dependency test demonstrated, to reduce the 

computational time Mesh 2 computed in COMSOL Multiphysics and 

Mesh 3 evaluated by Matlab are selected in order to provide a 

satisfactory solutions to our problem. 

Matlab code validation 
The Matlab programming code developed for this numerical 

computation has been validated with the simulations obtained from 

COMSOL Multiphysics 5.2 considering problem which possessed a 

mild shaped stenosis in the bifurcated artery. Fig. 3 shows the 

comparison on the filled contour plot of velocity obtained from 

COMSOL Multiphysics and Matlab, respectively with arrows 

representing the velocity vector.  

Fig. 3  Filled contour velocity obtained from (a) COMSOL multiphysics 

and (b) MATLAB computation. 

The results obtained from both computations agreed well with each 

other with a very small difference recorded approximately 0.0004 m/s 

for the maximum velocity. Table 2 consists of the respective maximum 

velocity obtained from COMSOL Multiphysics and Matlab together 

with its coordinate. 

Table 2  Comparison of maximum velocity and their coordinate. 

Software 
Maximum 

velocity (m/s) 
Coordinate  ,x y

COMSOL 

Multiphysics 
0.134216  50.015154,6.9239 10

Matlab 0.13461  50.015,2.6418 10

RESULT AND DISCUSSION 

The numerical computation has been performed in order to estimate the 

velocity profiles at the mother and daughter artery quantitatively for 

different severity of an overlapping stenosis. To have a thorough 

quantitative analysis on the effects of Newtonian blood rheology on the 

stenotic bifurcated artery flow phenomenon the data have been made 

use from [3], [15] : 

0.0075m,a 
0 0.015m,l   0.005m,d 

max 0.06m,x  1 0.025m,x 

-31050kgm ,  -10.0035Pas ,  β 30 , 0.0002m,q 
1 0.51 ,r a

0.3 ,  0.4 ,  0.5 .m a a a 

Axial velocity profiles for different severity of stenosis 
To further demonstrates the effect of severity of stenosis on the 

flow of blood, graph on the axial velocity profiles are illustrated as in 

Fig. 4 (a) and (b) for 30%, 40% and 50% occluded at the second throat 

of an overlapping stenotic region, 0.0175mx  and at the daughter 

artery, 0.04m,x  respectively. The percentage of the stenosis is 

calculated following the formula suggested in [16] as follow 

Percentage of severity of stenosis = 1 100,stenosis

normal

D

D

  
   

   

where stenosisD and normalD represents the diameter of artery at the most 

severe site and the diameter of the normal healthy artery, respectively.  

(b) 

(a) 

(a) 

(b) 
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(a) 

(b) 

Fig. 4  Effect of the severity of stenosis on the axial velocity profiles at 

(a) 0.0175mx  and (b) 0.04m.x 

The observation made in this current figure has shown that an 

increment on the severity of stenosis enhanced the magnitude of the 

maximum velocity at the center of the second throat of stenosis. Hence, 

as the height of the stenosis increases from 0.3m a  to 

0.4 ,  and 0.5m a a  the peak velocity are found increases substantially 

from 0.13247 to 0.16416 and 0.21958, respectively. According to [12], 

since the area is smaller at the maximum occlusion region hence the 

velocity increases the most at the center, similar to our findings.  

This would later caused to a reduction on velocity magnitude of 

blood flowing into the daughter artery compared to the velocity 

recorded on the previous figure as depicted on Fig. 4 (b) for each 

severity, .m This is because some part of the flow had already being 

decelerated after get obstructed in the mother artery. Moreover, from 

Fig. 4 (b) also it is clearly observed that, as the stenosis enlarged from 

0.4  to 0.5 ,m a a  the recirculation areas formed at 0.04mx 

increases significantly which is indicated by a negative flow near the 

arterial wall. 

Streamlines pattern for different severity of stenosis 
The influence of severity of stenosis on the flow recirculation 

zones are illustrated on Fig. 5 for severity, 0.3 ,  0.4 ,  0.5a.m a a 

Obviously, the recirculation zones are found to increase in sizes as the 

stenosis become severe.  

In fact, as the severity of stenosis increases to 0.4 ,m a  the 

formation of vortexes are not only found downstream of the stenotic 

region but also at the critical height of an overlapping stenosis. As the 

stenosis height enlarged to 0.5 ,m a  the recirculation area grows 

even larger at both regions. Hence, the severity of stenosis discovered 

to enhanced the vortex formation and may lead to a serious 

complication on the flow characteristics and may also trigger plaque 

rupture. 

(a) (b) (c) 

Fig. 5: Effect of severity of stenosis on the recirculation blood zones for (a) 0.3 ,m a  (b) 0.4m a  and (c) 0.5 .m a 
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CONCLUSION 

A mathematical model of a steady, laminar, incompressible, and 

Newtonian blood rheology in a stenotic bifurcated artery has been 

developed where the shape of the stenosis is considered overlapping. 

The analysis has been carried out on the axial velocity profile at specific 

region of the mother and daughter artery to investigate the effects of 

severity of stenosis at various locations. From the outcomes, it is 

concluded that the increment in the severity of stenosis demonstrates 

an increment of the velocity profile up to its peak value due to the more 

slender region of occlusion in the stenotic region which lead to lack of 

blood flowing through the daughter artery. In addition, as the stenosis 

grows become more severe, the flow reversal and recirculation zones 

are formed which might exposed an individual to a worsening effects 

of cardiovascular diseases. Hence, the overlapping shaped of stenosis 

does affect the flow velocity of the streaming blood significantly. 

The presented research is capable to predict the flow velocity of 

different degrees of an overlapping shaped stenosis. For future work, a 

compliant walls can be consider instead of a rigid walls assumption 

carried out for this current study. Besides that, a non-Newtonian blood 

rheology should also be taken into account. Study can also incorporates 

a time and others haemodynamic effects to be discussed in details. 
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