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Abstract 

In this article, the non-linear equation of unsteady flow of Powell-Eyring fluid is solved by using 
Adomian Decomposition Method (ADM). The fluid is assumed to be flowing under the effect of 
magnetic field. The model is developed for the case of constant accelerated plate. Sensitivity 
analysis is performed to show the effects of material parameters on the velocity profile and shear 
stress at the wall. The results confirmed the suitability of ADM in solving nonlinear equations. 
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INTRODUCTION 

Fluids that change viscosity due to the applied stress or forces are 
known by non-Newtonian fluid. There are several daily applications 
of the non-Newtonian fluids presented in many fields such as 
petroleum industries, foods manufacturing, geophysics, polymer and 
chemical industries. Different mathematical models are developed to 
investigate the behaviour of these fluids [1-4]. The complicated 
relationship between the shear stress and rate of strain in the non-
Newtonian fluids led to use many constitutive equations by authors to 
model the non-Newtonian fluid.  The complexity and variety of these 
constitutive equations makes obtaining the exact solutions of non-
Newtonian fluids are difficult. 

Different solutions are obtained in literature for the flow induced 
by constant acceleration plate for different kind of fluids such as 
Oldroyed–B, Maxwell and second grade fluid [5, 6]. Only a limited 
number of these solutions are exact. The most popular approximate 
analytical methods that were used in literature to solve steady and 
unsteady flow of non- Newtonian fluids are: Adomian decomposition 
method (ADM) [7, 8] and Homotopy perturbation method (HPM) [9].  
However, due to the difficulty of obtaining the exact solution for these 
fluids, a  numerical methods take a part besides the approximate 
analytical methods [10, 11]. 

Obtaining a solution of the non-Newtonian fluids is useful in 
determination of the experimental data. One of the popular non 
Newtonian fluids is the Powell-Eyring fluid which is derived from the 
kinetic theory of liquids rather than the empirical relations [12]. Sirohi 
et al. [13] studied the flow of Powell-Eyring fluid that induced by 
accelerated plate numerically by using three methods. One of these 

methods is based on transformation of the boundary value problem to 
initial value problem. Khan et al. [14] investigated the flow of Powell-
Eyring fluid under the effect of magnetic field. Their study becomes 
the basis of numerous scientific and engineering applications. 
Recently, constitutive equations with fractional derivative have been 
approved to be effective tools and can be used to describe the 
viscoelastic properties of non-Newtonians fluids. In particular, 
replacing the time ordinary derivatives of stress and strain by 
derivatives of fractional order provides a new fractional dimensionless 
quantity and variable. Khan et al. [15] used the Fourier sine transform 
to investigate the transient flow of an Oldroyd-B fluid in a porous 
medium. In 2009, the fractional calculus approach is used to formulate 
the constitutive relationship of this viscoelastic fluid [16, 17].  The 
results of the two previous studies show a good match of experimental 
data with model results especially when the constitutive equation with 
the fractional derivative is used. This result motivated some 
researches to apply the dimensionless quantity obtained by using the 
fractional derivative to some other problems that have similar flow 
situation [18, 19]. In this work, we apply the same procedure 
implemented by Khan et  al. [16] to find the approximate analytical 
solution for the flow of the Powell-Eyring fluid under the effect of 
MHD by using Adomian Decomposition Method.  

Description Of The Problem 
Let us consider the laminar unsteady flow of an incompressible 

Powell-Eyring fluid over the flat plate under the effect of 
hydromagnetic force. Assume that the fluid is bounded by an infinite 
plate at 0y = . Initially the plate at rest and at 0t > the plate starts 
to move parallel to itself with uniform velocityu . The coordinate 
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system is Cartesian coordinate where the x- axis parallel to the plates 
and y -axis is taken normal to it (see Fig. 1). The applied magnetic 

field 0B is parallel to the y -axis. The induced electric field is 
negligible since the Reynolds number is small. Consequently, the 

Lorentz force J B× under these conditions is equal to 2
0Bσ− u , 

where σ is the electrical conductivity and J is the current density. 
The pressure p is assumed to be standard atmospheric. 

Figure 1 Geometry of the problem. 

Mathematical Formulation  
The balance of mass and momentum equations under the effect of 

magnetic field are given by 

. 0∇ =u                                                                         (1) 

( . ) divd J B
dt

ρ⎡ ⎤+ ∇ = + ×⎢ ⎥⎣ ⎦

u u u T                       (2) 

where ρ is the density,	 u   is the velocity vector and /d dt is 

the material time derivative. The Cauchy stress tensorT of Powell-
Eyring fluid is given by:  

    xyp= − +T I τ                                                               (3)       

where xyτ is the extra stress tensor. The velocity and the stress 

are given as follows: 

( , )    , = ( ,t)u y t i yτ=u τ                                                (4) 
   

By substituting the values of u and xyτ in Equations (1) and (2), 

the continuity Equation (1) is satisfied while Equation (2) is reduced 
to 

2
0

yxp Bxt y
τ

ρ σ
∂∂ ∂

= − + −
∂∂ ∂

u u                                            (5) 

The extra stress tensor xyτ of Powell-Eyring fluid model is 

given by Powell and Eyring [12] : 

11 1Sinhyx y c y
τ µ

β
− ⎛ ⎞∂ ∂

= + ⎜ ⎟∂ ∂⎝ ⎠

u u
                                    (6) 

where β , c are the material parameters and µ is the dynamic 
viscosity. The Taylor expansion of the inverse hyperbolic term in the 
above equation is given by  [20, 21]: 

3
1 1 1 1 1 1Sinh , 1

6c y c y c y c y
− ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

≅ − <<⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

u u u u
       (7) 

Substitute Equation (7) into Equation (6) to get           
0xx yy xz zz yzτ τ τ τ τ= = = = = and  

3

3

1 1
6yx c y c y

τ µ
β β

⎛ ⎞⎡ ⎤ ∂ ∂
= + − ⎜ ⎟⎢ ⎥ ∂ ∂⎣ ⎦ ⎝ ⎠

u u

                                     (8) 

Flow due to constant accelerated plate 

Assuming that the body force 0p
x
∂

=
∂

then by using Equations 

(8) and (4) into Equation (5) we get: 

2 22 2
0

2 3 2

1 1
2

B
t c y c y y

σ
ν

βρ ρ β ρ
⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂

= + − −⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

uu u u u
  (9) 

The corresponding initial and boundary conditions for Equation 
(9) in the case of constant accelerated plate are 

( , )( ,0) 0,  0 ,u y tu y
t

∂
= =

∂
when y>0                                (10) 

(0, )    u t At= for    0,t >                                                        (11) 

we introduced the following dimensionless variable as given in 
[17-19] 

( )

1 1
2 3 3

12
3

  , =y ,    G=A A ut
A

τ ξ
ν ν ν

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

                       (12) 

the governing problem in dimensionless form takes the form 

22 2

2 2

( , ) ( , ) ( , ) ( , )( , ) ,    , 0G G G GMGξ τ ξ τ ξ τ ξ τ
ξ τ α γ ξ τ

τ ξ ξ ξ
⎛ ⎞∂ ∂ ∂ ∂

+ = − >⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
(13) 

And the boundary conditions take the form 

  

(0, ) ,    ( , ) 0,    >0,G Gτ τ τ τ= ∞ =
                                (14) 

( ,0)( ,0) 0,    0,    >0,GG ξ
ξ ξ

τ
∂

= =
∂

                            (15) 

Where 
1

2 43
0

2 3 5

1 11    ,M= ,   =
2

B A
c A c

σ ν
α γ

ν βρ ρ ρβ ν
⎛ ⎞⎡ ⎤ ⎛ ⎞= + ⎜ ⎟⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦ ⎝ ⎠

(16) 
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Here M is the non-dimensional magnetic parameter,	α and γ
are the non-dimensional non- Newtonian parameters. 

Solution for constant accelerated plate 
Adomian decomposition method (ADM) is developed by 

Adomian [22] to solve the nonlinear equations by using the iterative 
technique to find the series solution. The method is applicable to a 
wide class of nonlinear partial di�erential equations, and integral 
equations. To understand the basic concept of ADM, we write the 
differential equation in operator form as follows: 
( , ) ( , ) ( , ) ( , ) ( , )L u L u Ru Nu gτ ξξ τ ξ τ ξ τ ξ τ ξ τ+ + + =    (17) 

( , ) ( , ) ( , ) ( , ) ( , )L u g L u Ru Nuξ τξ τ ξ τ ξ τ ξ τ ξ τ= − − −   (18) 

where 
2

2Lξ ξ
∂

=
∂

and Lτ τ
∂

=
∂

are linear invertible operators, 

( , )g ξ τ is the source term, ( , )Ru ξ τ is the remaining linear term  

and ( , )Nu ξ τ is the non-linear term which can be expanded by 

using the Adomian polynomial nA . If we apply the inverse operator 

1 (.)L d dξ ξ ξ− = ∫∫ to Equation (18) yields 

1 1 1 1 1( , ) ( , ) ( , ) ( , ) ( , )L L u L g L L u L Ru L Nuξ ξ ξ ξ τ ξ ξξ τ ξ τ ξ τ ξ τ ξ τ− − − − −= − − −                                                                                                                                                  

      

                                                                                                          (19) 
The integration of the left hand side in Equation (19) gives 

              (20) 

According to ADM the unknown function ( , )u ξ τ is decomposed 

into its components where the series solution ( , )u ξ τ is defined by:  

                          (21) 

Assume the non-linear term in Equation (19) 
0

( , ) n
n

Nu Aξ τ
∞

=

=∑ . 

By using the boundary condition and substition of  Equations (20) and 
(21) into Equation (19) yields: 

1
0 1 0 1

1 1
0 1 0 1

... ( , ) [ ...]

[ ...] [ ...]

u u f L L u u

L R u u L A A
ξ τ

ξ ξ

ξ τ −

− −

+ + = − + +

− + + − + +
             (22) 

where 1( , ) ( , )f L gξξ τ φ ξ τ−= − is the zero component. 

Consequently, the recursive relation is defined as:  

                                (23) 
Rewrite Equation (13) in operator form as in Equation (22) and divide 
by α yields 

[ ] [ ]
22

2

1( , ) ( , ) ( , )

( , ) ( , ) ,

ML G L G G

G G

ξ τξ τ ξ τ ξ τ
α α

γ ξ τ ξ τ
α ξ ξ

= +

⎛ ⎞∂ ∂
+ ⎜ ⎟∂ ∂⎝ ⎠              (24)

we followed the same procedure described from Equations (19) - (22) 
to find the components of the solution . Since the initial condition in 
Equation (15) is equal to zero, then the operator related to τ cannot 

be applied. Consequently, the linear invertible operator in ξ - 

direction is implemented following Wazwaz [23] and Gul et al. [24]. 
Apply the inverse operator to both sides of Equation (24) where 

1 (.)L d dξ ξ ξ− = ∫∫ , and use the boundary conditions (15) we get: 

[ ]1 1

22
1

2

1( , ) ( ) [ ( , )] ( , )

( , ) ( , )

MG h L L G L G

G GL

ξ τ ξ

ξ

ξ τ τ τ ξ τ ξ τ
α α

γ ξ τ ξ τ
α ξ ξ

− −

−

= + + +

⎡ ⎤⎛ ⎞∂ ∂
+ ⎢ ⎥⎜ ⎟∂ ∂⎢ ⎝ ⎠ ⎥⎣ ⎦

                                                                                                      (25) 

Where ( ) (0, )h uξξ τ ξ τ= , the non-linear term  

N = is represented by the Adomian’s 

polynomials 0 1
0

......n
n

N A A A
∞

=

= = + +∑ which are calculated 

as follows: 

                                                                                                          (26) 
Choose the zeroth component problem for the MHD of Powell-Eyring 
fluid as 

0 ( , ) ( )G hξ τ τ ξ τ= +                                                                (27) 
subject to the boundary conditions 

(0, ) ,      >0,G τ τ τ=
(0, )( ,0) 0,    1,    >0,GG τ

ξ ξ
τ

∂
= =

∂
The remaining components can be written as  

1 1 1
1

0 0 0

1( , ) ( , ) ( , ) , 0k n n n
n n n

MG L L G L G L A kξ τ ξ ξ

γ
ξ τ ξ τ ξ τ

α α α

∞ ∞ ∞
− − −

+
= = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + + ≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑ ∑ ∑

                                                                                                           (28)  
To find the first component of the solution substitute 0k = into 
Equations (28) yield: 

1 ( , ) ( , ) (0, ) (0, )L L u u u uξ ξ ξξ τ ξ τ τ ξ τ− = − −

0 1 2
0

( , ) ( , ) ......n
n

u u u u uξ τ ξ τ
∞

=

= = + + +∑

0 ( , )u f ξ τ=
1 1 1

1 0 0 0[ ] [ ] [ ]u L L u L R u L Aξ τ ξ ξ
− − −= − − −
1 1 1

2 1 1 1[ ] [ ] [ ]
...
u L L u L R u L Aξ τ ξ ξ

− − −= − − −

22

2

( , ) ( , )G Gξ τ ξ τ
ξ ξ

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

2 2
0 0

0 2

2 22
0 0 01 1

1 2 2

2 22 22 2
0 0 0 0 01 1 1 2 2

2 2 2 2 2

,

2 ,

2 2 .

dG d GA
d d

dG dG d Gd G dGA
d d d d d

d G dG dG d G dGdG dG d G dG d GA
d d d d d d d d d d

ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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[ ] [ ] [ ]1 1 1
1 0 0 0

1( , ) ( , ) ( , )MG L L G L G L Aξ τ ξ ξ

γ
ξ τ ξ τ ξ τ

α α α
− − −= + +

                                                                                                           

                                                                                                          (29) 

Similarly we can find 2 3, ,...G G
operating with the inverse linear operator 1 (.)L d dξ ξ ξ− = ∫∫ , we 

obtain the first several component solutions, and the solution in the 
series form as follows   

4 2 4 2 2 6

2 2 3

3 6 3 2 5 2 3 5
3

3 2 3 3

( , )
24 24 2 420

( )( ) ( ) ...
720 6 15 6

M M M MG

M M M hh

ξ ξ τ ξ τ ξ
ξ τ τ

α α α α
ξ τ γ ξ γ ξ γ ξ τ

τ
α α α α

= + + + + +

+ + +
(30)

                                                                                                                                                                                                                                                  
To complete the determination of the series solution we should 
determine the function 
( ) (0, )h uξτ τ= which is not given ,with the help of equation (14) 

substitute 0τ =   and equating  the coefficient of same power in the 
two sides of Equation (30) it is found that the series solution is: 

2 4

2

2 6 3 8

3 4

(1 ) (2 )( , )
2 24

(3 ) (4 ) ...
720 40320

M M MG

M M M M

τ ξ τ ξ
ξ τ τ

α α
τ ξ τ ξ

α α

+ +
= + + +

+ +
+ +

         

                                                                                                  (31)                                                                                                         
The direct calculation shows that satisfied Equations (13) - 

(15) when . Calculating more terms of Equation (28) produced 
more accurate solution. 

RESULTS AND DISCUSSION 

In the present work we have considered the unsteady flow of an 
incompressible, isothermal, and homogeneous Powell-Eyring fluid. 
The governing partial differential equation for the constant accelerated 
flow of Powell-Eyring fluid has been analytically solved by using 
Adomian Decomposition Method. In Figures 2 and 3, the velocity

is plotted versus  with different non-Newtonian 
parameters to highlight the effect of these parameters on the constant 
accelerated flow.  

Figure (2) shows the variation of the velocity by 

changing the time  for different values of .Generally there is a 

proportional relationship between and . Moreover, it is 

noticed that at fixed value of , the velocity increases by constant 
value when time is changed from 0.2 to 1. Figure 3 illustrates the 
influence of the non-Newtonian fluid parameter α on the velocity. It is 
found that the velocity  increasing with decreasing the non-
Newtonian parameterα . This increase in velocity is due to the large 
value of viscosity at a small value of . Generally the results indicate 
that when the non-Newtonian parameter equal zero the solution  
depend on the non-Newtonian parameter . the plot of the solution 
is shown to be of Newtonian behaviour when 0Mγ = = ; see Fig 
4. 

Figure 2 Velocity profile versusξ   for different values of 

by 

using  3, 0Mα = =

Figure 3 Velocity profile for different values of  by using 

Figure 4: Velocity gradient for different values of ξ by using 

0, 0.1Mγ τ= = =

( , )G ξ τ
0γ =

( , )G ξ τ ξ

( , )G ξ τ
τ ξ

τ ( , )G ξ τ
ξ

( , )G ξ τ

α
γ
α

τ

α
0,   =0.Mγ =
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CONCLUSION 

The series solution for the velocity of MHD unsteady flow of 
Powell-Eyring fluid was obtained using the ADM. Generally, several 
methods are used in solving related non-linear PDEs. The Adomian 
Decomposition Method is one of the effective methods, which 
provides an efficient solution for the physical equations modelled by 
nonlinear differential equations. The implementation of ADM and the 
calculation of Adomian polynomials do not need complex 
calculations, except for simple and elementary operations effectively 
used. This has led to reduce the computational work compared to the 
other methods. Furthermore, the influences of the parameters in the 
velocity have been shown in different graphs. It was observed that the 
velocity field depends on the involved parameters. In addition, it was 
noticed that decreasing the value of non-Newtonian parameters 
increased the velocity flow of the fluid. Moreover, it was found that 
the shear thinning effect in the fluid was higher when the value of  
decreased.  

ACKNOWLEDGEMENT 

The authors thankfully acknowledged the financial support from 
Ministry of Higher Education (MOHE), Malaysia and FRGS Project 
Vot No: 4F354. 

REFERENCES 

[1] Khan, I., Malik, M., Salahuddin, T., Khan, M., and Rehman, K. U. 2017. 
Homogenous–heterogeneous reactions in MHD flow of Powell–Eyring 
fluid over a stretching sheet with Newtonian heating. Neural Computing 
and Applications. 1-8. 

[2] Hayat, T., Iqbal, Z., Qasim, M., and Obaidat, S. 2012. Steady flow of an 
Eyring Powell fluid over a moving surface with convective boundary 
conditions. International Journal of Heat and Mass Transfer. 55(7), 
1817-1822. 

[3] Fetecau, C., Zierep, J., Bohning, R., and Fetecau, C. 2010. On the 
energetic balance for the flow of an Oldroyd-B fluid due to a flat plate 
subject to a time-dependent shear stress. Computers & Mathematics with 
Applications. 60(1), 74-82. 

[4] Ishak, A., Nazar, R., and Pop, I. 2006.  Mixed convection boundary 
layers in the stagnation-point flow toward a stretching vertical sheet.
Meccanica. 41(5), 509-518. 

[5] Fetecau, C., Prasad, S. C., and Rajagopal, K. R. A 2007. note on the flow 
induced by a constantly accelerating plate in an Oldroyd-B fluid. Applied 
Mathematical Modelling. 31(4), 647-654. 

[6] Jamil, M., Rauf, A., Fetecau, C., and Khan, N. Helical flows of second 
grade fluid due to constantly accelerated shear stresses. Communications 
in Nonlinear Science and Numerical Simulation. 16(4), 1959-1969. 

[7] Adesanya, S. O., Falade, J. A., and Rach, R. 2015.  Effect of couple 
stresses on hydromagnetic Eyring-Powell fluid flow through a porous 
channel. Theoretical and Applied Mechanics. 42(2), 135-150. 

[8] Siddiqui, A., Haroon, T., and Zeb, M. 2014. Analysis of Eyring-Powell 
fluid in helical screw rheometer. The Scientific World Journal. 
382(2015), 355-358. 

[9] Zaman, H., Zaman, H., and Zaman, H. 2013. for the Eyring-Powell 
model with porous walls Unsteady incompressible Couette flow problem.
American Journal of Computational Mathematics. 3(4), 313-325 . 

[10] Akbar, N. S., Ebaid, A., and Khan, Z. 2015. Numerical analysis of 
magnetic field effects on Eyring-Powell fluid flow towards a stretching 
sheet. Journal of Magnetism and Magnetic Materials. 382, 355-358. 

[11] Ellahi, R., Shivanian, E., Abbasbandy, S., and Hayat, T. 2016. Numerical 
study of magnetohydrodynamics generalized Couette flow of Eyring-
Powell fluid with heat transfer and slip condition. International Journal 
of Numerical Methods for Heat & Fluid Flow. 26(5), 1433-1445. 

[12] Powell, R. E. and Eyring, H. 1944. Mechanism for relaxation theory of 
viscosity. Nature. 154(55), 427-428. 

[13] Sirohi, V., Timol, M., and Kalthia, N. 1987. Powell-Eyring model flow 
near an accelerated plate. Fluid Dynamics Research. 2(3), 193-204. 

[14] Khan, N. A., Aziz, S., and Khan, N. A. 2014.  MHD flow of Powell–
Eyring fluid over a rotating disk. Journal of the Taiwan Institute of 
Chemical Engineers. 45(6), 2859-2867. 

[15] Khan, M., Saleem, M., Fetecau, C., and Hayat, T. 2007. Transient 
oscillatory and constantly accelerated non-Newtonian flow in a porous 
medium. International Journal of Non-Linear Mechanics. 42(10), 1224-
1239. 

[16] Khan, M., Ali, S. H., and Qi, H. 2009. Some accelerated flows for a 
generalized Oldroyd-B fluid. Nonlinear analysis. Real World 
Applications. 10(2), 980-991. 

[17] Khan, M., Ali, S. H., and Qi, H. 2009. On accelerated flows of a 
viscoelastic fluid with the fractional Burgers’ model. Nonlinear Analysis 
Real World Applications. 10(4), 2286-2296. 

[18] Aziz, Z. A., Salah, F., and Ching, D. L. C. 2011.  On accelerated flow for 
MHD generalized burgers' fluid in a porous medium and rotating frame.
IAENG International Journal of Applied Mathematics. 41(3), 199-205. 

[19] Khan, I., Ali, F., Mustapha, N., and Shafie, S. 2015. Closed-form 
solutions for accelerated MHD flow of a generalized Burgers’ fluid in a 
rotating frame and porous medium. Boundary Value Problems. 2015(8), 
1-17. 

[20] Jalil, M., Asghar, S., and Imran, S. 2013.  Self similar solutions for the 
flow and heat transfer of Powell-Eyring fluid over a moving surface in a 
parallel free stream. International Journal of Heat and Mass Transfer. 
65, 73-79. 

[21] Hansen, A. and Na, T. Y. 1986.  Similarity solutions of laminar, 
incompressible boundary layer equations of non-Newtonian fluids.
Journal of Basic Engineering. 90(1), 71-74. 

[22] Adomian, G. 1991. Solving frontier problems modelled by nonlinear 
partial differential equations. Computers & Mathematics with 
Applications. 22(8), 91-94. 

[23] Wazwaz, A.-M. 2010. Partial Differential Equations and Solitary Waves 
Theory. Springer Science & Business Media. 

[24] Gul, T., Ghani, F., Islam, S., Shah, R. A., Khan, I., Nasir, S., and 
Sharidan, S. 2016. Unsteady thin film flow of a fourth grade fluid over a 
vertical moving and oscillating belt. Propulsion and Power Research. 
5(3), 223-235. 

α

http://www.foxitsoftware.com/shopping

