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Abstract 

Various epileptic discharge detection studies have been conducted however, not many clinically 
significant outcomes have been achieved in developing reliable algorithm using nonlinear 
measurement techniques. Study has reported that some of the linear measurement techniques 
performs better than nonlinear technique in detecting the epileptic discharge in terms of accuracy, 
sensitivity and specificity. The reliability issue has been addressed in nonlinear techniques, by 
introducing multiresolution analysis (MRA). MRA with approximate entropy are the most common 
combination used to detect epileptic discharge, leaving other nonlinear complexity measures are yet 
to be explored with MRA. Previously, we have study the performance of Approximate Entropy (ApEn) 
and Lempel Ziv (LZ) using MRA. In this paper, we have expanded the scope by studying performance 
of MRA with other complexity measurement including Hurst exponent (HE), Kolmogorov complexity 
(KC), Shannon Entropy (SE) and Sample Entropy (SampEn). Groups of normal with interictal (Set A 
and B), normal with ictal (Set A and C) and interictal with ictal (Set B and C) were used to evaluate the 
performance. For the result, MRA managed to enhance the accuracy of ApEn (AB: 74% to 89%, AC: 
98% to 100%, BC:88% to 94%) and SE (AB: 69% to 98%, AC: 100% to 100%, BC:96% to 97%) in 
detecting epileptic discharge the best while deteriorating LZ (AB: 49% to 83%, AC: 91% to 86%, 
BC:89% to 88%) and HE (AB: 65% to 70%, AC: 89% to 78%, BC:80% to 54%) performance. 
Computation time tends to increase with the implementation of MRA. 

Keywords: Multiresolution analysis, nonlinear complexity measurement, electroencephalograph, 
seizure 
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INTRODUCTION 

The Electroencephalogram (EEG) is non-stationary signal which 

condition to produce this signal vary over time, making EEG signal to 

exhibit nonstationary, nonlinear, stochastic, dynamic and also complex 

behaviour (Klonowski, 2009). These properties have been used by 

previous researcher to investigate in EEG study related to 

characterization of brain function (Grassberger et al., 1991), study of 

emotional (Li et al., 2016), cognitive processing (Natarajan et al. 2004), 

measurement of depth of anaesthesia (Zhang et al., 2001), and seizure 

detection (Ocak, 2009).  

Dimensionless nature of nonlinear technique is an advantage in 

predicting and detecting epileptic event (Alotaiby et al., 2014; Blanco 

et al., 2013; Clemson et al., 2016). The same technique is applicable in 

localization and characterisation of epileptic region (Stam, 2005), 

which could assist in automated epileptic discharge detection (Gajic et 

al., 2015).  

Detecting epileptic discharge is important for a neurologist to 

diagnose epilepsy. Conventional method by visual screening are 

tedious and time consuming activity. Development of epileptic 

discharge detection algorithim is the solution for this limitation. 

Nonlinear complexity measurement is suitable to be applied as epileptic 

discharge detection algorithm due to the release of excessive and 

synchronous of this discharge (Fisher et al., 2005). The presence of 

epileptic discharge in EEG signal will lower the complexity of the 

signal (Smith, 2005), thus making it a suitable feature to be extracted 

to differentiate normal and epileptic EEG. Despite numerous of studies 

were conducted in this area, limited progress has been achieved so far 

(Nagaraj et al., 2015). Study has reported that some of linear 

measurement techniques performances are better than nonlinear 

technique in detecting the epileptic discharge (Nagaraj et al., 2015).  

Past researchers have combined multiresolution analysis (MRA) 

with nonlinear analysis in epileptic discharge study to enhance the 

performance. Implementation of MRA with Lyapunov exponent and 

Correlation dimension demonstrated good performance in 

discriminating seizure with non-seizure (Gajic et al., 2015). In (Ocak, 

2009), MRA is implemented along with approximate entropy. Another 

utilization of MRA with approximate entropy are reported in (Kumar 

et al., 2014; Wang et al., 2017). Based on literature finding, most 

algorithm implement approximate entropy as complexity measurement 

with MRA. Other complexity measurement techniques such as Lempel 

Ziv, Hurst exponent, Kolmogorov complexity and Shannon entropy are 

yet to be explored.  
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The core concern of this research is to identify the best potential 

complexity measurement algorithm to be applied with MRA approach 

in detecting epileptic discharge. The outcome of this research is to 

provide a suggestion for potential technique to be used in clinical 

environment and aid in reducing the neurologist diagnosing time for 

epilepsy. In our previous study we focused on effect of MRA on 

Lempel Ziv and ApEn (Fathillah et al., 2017). In this paper, the study 

has been expanded by involving additional complexity measurement 

technique such as Hurst exponent, Kolmogorov complexity, Shannon 

entropy and Sample entropy. Performance measurement in detecting 

epileptic discharge between with and without implementation of MRA 

were observed. The automated epileptic discharge detection was 

developed using support vector machine (SVM) to classify between 

normal, interictal and ictal epileptic discharge. 

METHODOLOGY 

In this study, EEG data were processed using MRA. Complexity 

features are extracted from each sub-band using nonlinear complexity 

measurements and the outcome were classified using SVM. The work 

flow is shown as in Fig. 1. 

Fig. 1 Workflow of proposed methodology. 

Data Source 
This study utilizes three sets of online public EEG data (A, B, and 

C) which were acquired from the Department of Epileptology, 

University of Bonn database (Andrzejak et al., 2012). Each set contains 

100 single channels that were recorded using 128-channel amplifier 

system. The duration of each data is 23.6 seconds, sampled at 173.61Hz 

and band-pass filtered from 0.53 Hz to 40 Hz. Set A consists of 5 

healthy subjects where the subjects were awake and relaxed with eye 

opened. For set B, it contains interictal epileptic discharge (interictal 

seizure) and was recorded within epileptogenic region. Set C contained 

ictal epileptic discharge (ictal seizure) activities. The interictal epileptic 

discharge has same characteristic as ictal, but in shorter duration and no 

symptom shown by the patient (Staley & Dudek, 2006). The electrodes 

placement is according to international 10-20 system. The 

summarization of datasets detail is as in Table 1.   

Table 1 Summary of clinical data. 

Set 1 (A) Set 2 (B) Set 3 (C) 

Subject 
Condition 

Healthy 
subject with 
eyes open 

Interictal 
epileptic 

discharge 

Ictal epileptic 
discharge 

Electrode 
placement 

International 
10-20 systems 

Within 
epileptogenic 

zone 

Within 
epileptogenic 

zone 

Seizure data is utilized in this study to demonstrate the change of 

complexity during normal, interictal and seizure period. During the 

release of epileptic discharge, EEG signal appear regular and repetitive 

(Ocak 2009) compare to normal EEG. Fig. 2 shows the comparison of 

EEG signal between normal, interictal and ictal discharge. 

(a)    (b)  

(c) 
Fig. 2. Complexity pattern of EEG signal (a) Normal (b) Interictal 

(c) Ictal. 

Signal Processing 
Epileptic EEG have the non-stationary and transient characteristic, 

in such condition application of frequency domain transformation is 

inefficient. With the application of time-frequency transformation such 

as wavelet transform, transient abnormal pattern occurs at various 

points in the signal can be detected. Wavelet transform is a convenient 

approach as it can provide precise information regarding frequency 

when the signal frequency is low and accurate information in time when 

signal frequency is high. Wavelet transform can be divided into two 

categories, Continuous Wavelet Transform and Discrete Wavelet 

Transform. In this study, we will focus on implementation of DWT due 

to its ability to employ MRA and can be described by the equation (1). 

𝑓(𝑡) = ∑ 2
𝑗

2⁄ 𝑐𝑗(𝑘)𝜑(2𝑗𝑡 − 𝑘) + ∑ ∑ 2
𝑗

2⁄∞
𝑘=0 𝑑𝑗(𝑘)𝜔(2𝑗𝑡 − 𝑙)

𝑗−1
𝑗=0𝑗∈𝑍   

(1) 

where ϕ(t) is a scaling function, ψ (t) is a basis function and j is the scale 

index. Initially, the sampling frequency will be divided by two 

according to Nyquist theorem. The signal then undergoes high pass 

filter and low pass filter that will produce an approximation of f(t) and 

detail of f(t) respectively which will be presented in finer scale. The 

cut-off frequency of high-pass and low-pass filter is equal to one-fourth 

of the sampling frequency.  

The types of wavelets play important role in the wavelet transform. 

In this study, we adopted Daubechies 4 (db4) as mother wavelet 

because of its smoothing feature and suitability in detecting EEG 

changes (Omerhodzic et al., 2010). Db4 also has advantages in 

orthogonality property and efficient filter implementation (Adeli et al., 

2003). Decomposition level is set to five to correlate it with 

classification of wave.  

The result of this process is the sub-band decomposition, which are 

to be used in this study. The sub-bands are represent by coefficient A5, 

D5, D4, D3, D2 and D1. Coeffients A5 is product of approximation of 

f(t) while other coffiencient is detail of f(t). Complexity feature is 

extracted for all the coeffients using complexity measurement that will 

be discussed later. Fig. 3 shows decomposition of signal into 6 sub-

bands frequency 

Table 2 Coefficient and its representation of frequency band. 

Coefficient Frequency 
Band (Hz) 

Type of wave 
Level of 

Decomposition 

D1 43.40-86.81 Noise 1 

D2 21.70-43.40 Beta-Gamma 2 

D3 10.85-21.70 Alpha-Beta 3 

D4 5.43-10.85 Theta-Alpha 4 

D5 2.71-5.43 Delta-Theta 5 

A5 0.5-2.71 Delta 5 

 

http://www.foxitsoftware.com/shopping


 Fathillah et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 14, No. 2 (2018) 219-225  

 

221 

 
 
Fig. 3 Decomposition of signal into coefficient. S represent the original 

signal decompose into the lowest frequency signal (A5) to the highest 

frequency signal (D1). 

Complexity Measurement 
Approximate entropy, Lempel-Ziv complexity, Hurst exponent, 

Kolmogorov complexity, Shannon entropy and sample entropy are 

implemented to extract feature in this study. These complexity 

measurements have difference way in extracting complexity feature but 

have the same motivation to discriminate normal EEG from interictal 

and ictal EEG. The complexity measurements are implemented in 

MatLab 2015. 

 

Approximate Entropy 
Approximate Entropy (ApEn) first was developed by Pincus to 

measure system complexity (Pincus 1991). In signal analysis, ApEn 

helped to measure the regularity and predictability of a signal. The 

implemenation of ApEn in this study is determined by the following 

procedure. 

 

1) Let a data sequence containing n data points be Sn = {u(1), u(2), 

u(3),….,u(n)] 

2) Choose value of m and r where m = pattern length and r = 

criterion of similarity 𝑟 = 𝑘 × 𝑆𝐷 for k=0,0.1,0.2,0.3,…,0.9. SD 

will be present as standard deviation of data Sn 

3) Let X be sequence of x(i) such that 

x(i)=[u(i),u(i+1),u(i+2),…,u(i+m-1)] where i=1,2,3,…,(n-m+1) 

4) Find the distance between vector x(i) and x(j) by using formula 

         𝑑[𝑥, 𝑥∗] = 𝑚𝑎𝑥𝑎 |𝑢(𝑎) − 𝑢∗(𝑎)| , if 𝑑[𝑥, 𝑥∗] < 𝑟 the pattern are 

likely similar 

5) Calculate 𝐶𝑖
𝑚 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑[𝑥,𝑥∗]𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑟

(𝑛−𝑚+1)
 and 𝐶𝑖

𝑚+1 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑[𝑥,𝑥∗]𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑟

(𝑛−𝑚+1)
 

6) Define Φ𝑚(𝑟) =
∑ ln (𝐶𝑖

𝑚(𝑟))𝑛−𝑚+1
𝑖=1

𝑛−𝑚+1
 and  Φ𝑚+1(𝑟) =

∑ ln (𝐶𝑖
𝑚(𝑟))𝑛−𝑚+1

𝑖=1

𝑛−𝑚+1
 

7) ApEn(m,r,n) is determined as follow: 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑛) =
𝛷𝑚(𝑟) − 𝛷𝑚+1(𝑟) 

 

Large ApEn value indicates the signal is unpredictable and irregular 

while a small ApEn value indicate higher regularity and repetitive 

pattern. To determine the ApEn, the (m) and (r) are set to 2 and 0.2xSD 

respectively based on Srinivasan et. al (Srinivasan et al. 2007) to obtain 

the highest percentage of efficiency.   

 

Lempel-Ziv Complexity 
To compute LZ complexity, the signal S(n) must be transformed 

into a symbolic sequence first. The EEG signal was converted into a 

binary sequence (Aboy et al. 2006) by comparing with threshold Td as 

shown in (2) (3) .  

 

𝑆 = 𝑠(1), 𝑠(2), … , 𝑠(𝑛)  (2) 

 

where 

𝑠(𝑖) = {1, 𝑖𝑓 𝑠(𝑖) < 𝑇𝑑  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (3) 

 

Commonly the median is used as the threshold due to its robustness 

to outliers (Aboy et al. 2006). The signal S is scanned from left to right 

and the complexity counter c(n) will increase each time new 

subsequence of consecutive character is come up.  The complexity 

value are obtained by following algorithm (Abásolo et al. 2007): 

 

1) Let P be a signal which contain two subsequences, S and Q. Let 

SQ be the sequence of S and Q, while SQπ is derived from SQ 

after its last character deleted. Let v(SQπ) indicate the vocabulary 

of all different subsequences of SQπ. For started, value c(n)=1, 

S=s(1), Q=s(2) and SQπ=s(1). 

2) For generalization, S=s(1), s(2), …, s(r), Q=s(r+1) and SQπ=s(1), 

s(2), …, s(r). If Q fits in v(SQπ), then Q is a subsequence of SQπ 

which is not a new sequence. 

3) Renew Q to be s(r+1). Value Q is checked whether it belongs to 

v(SQπ) or not. 

4) Step 3 is repeat until Q does not belongs to v(SQπ), which means 

Q is not a subsequence of v(SQπ). 

5) SQπ is a new sequence, so value of c(n) increase by one. 

6) S is renewed to be S=s(1), s(2), …, s(r+i) and Q=s(r+i+1). 

7) Repeat procedure until Q is the last character. 

 

The complexity value depends on number of different 

subsequences in P. To acquire complexity independent to sequence 

length, c(n) need to be normalized as follow (4): 

 

𝐶(𝑛) =
𝑐(𝑛)×𝑙𝑜𝑔3 𝑛 

𝑛
   (4) 

 

The value of C(n) obtained are used as feature in this study to measure 

the complexity of the EEG. 

 

Hurst Exponent 
Hurst exponent (HE) was introduced by Harold Edward Hurst to 

determine dam sizing for the Nile River’s based on observation of rain 

and drought condition for a long period of time (Hurst 1956).  The 

concept is to measure the presence or absence of long-range 

dependence and its extent in a time series. HE can be defined as (5) 

 

𝐻 =
𝑙𝑜𝑔 

𝑅

𝑆
 

𝑙𝑜𝑔 𝑇 
   (5) 

 

Where R/S is the corresponding value of rescaled range and T is the 

duration of the sample of data. Hurst exponent values range from 0 to 

1. Supposing that the value of exponent is less than 0.5, the time series 

data are likely to be anti-correlated, whereby an increase will be 

followed by decrease and a decrease will be followed increase value. 

Exponent value of 0.5 indicates that the time series it is totally random 

and unpredictable. Exponent values greater than 0.5 are claim to be 

correlated whereby an increase in the values will likely to be followed 

by increase value and decreasing value will likely to be followed by 

decreasing value. Application of HE in automated epileptic discharge 

detection has been conducted by Hosseini et al, Geng et. al and Kishky 

et al. It is proven that the exponent values of interictal EEG are higher 

than ictal EEG by Geng et al (Geng et al. 2011) and Kishky (El-Kishky 

2012). The implementation of HE in this study is begin with 

dispersional analysis or also known as Aggregated Variance method 

(Murad S. Taqqu, Vadim Teverovsky 1995) on the EEG segment. 

Matlab polyfit is applied after the analysis to estimate the HE of the 

time series. 

 

Kolmogorov Complexity 
Kolmogorov Complexity (KC) was developed by Andrey 

Kolmogorov to defined as the length of the shortest possible description 

of a time series (Kolmogorov 1963). The Kolmogorov Complexity is 

approximate the entropy of the source distribution for the process 

generating the sequence. The difference from entropy is it relates to the 
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specific string being considered rather than the source distribution 

(Evans et al. 2002). KC can be defined as equation (6) 

𝐾𝜑(𝑥) = {𝑚𝑖𝑛𝜑(𝑝)=𝑥 𝑙(𝑝) }   (6) 

Where  𝜑 represents a universal computer, p represents a program 

and x represent a string. Recent study has presented its application in 

detecting epileptic discharge (Pratiher et al. 2016). The result shows 

increasing value for ictal epileptic discharge activity compare to normal 

and interictal epileptic discharge. Random signal rather has high 

Kolmogorov Complexity value (Evans et al. 2002)  

Shannon Entropy 
Claude Shannon introduced Shannon entropy (SE) in Information 

Theory (Shannon 1948). It computes the degree of uncertainty that exist 

in a system. SE can be defined as equation (7) 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)𝑁−1
𝑖=0 (7) 

Which yield the value of the complexity in 𝑥𝑖 and p stand for 

probability of pattern. Recent publication regarding Shannon entropy 

has shown good performance in detecting seizure (Alsharabi et al. 

2016).  

Sample Entropy 
Sample entropy (SampEn) is another popular complexity 

measurement technique developed by Richman and Moorman 

(Richman & Moorman, 2000) as a modification of ApEn. Compared to 

ApEn, this technique has advantages in application on short time series 

data and consistency. SampEn is a negative probability algorithm 

where two sequences similar for m points will stay the same at the next 

point. This is due to self-matches are not included in computing the 

probability.  To compute the SampEn, the pattern length (m), number 

of data point (N) and vector comparison distance (r) must be declared. 

Since the time series length is finite, the SampEn can be defined as 

follow (8) 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = 𝑙𝑛 [
𝐵𝑚(𝑟)

𝐴𝑚(𝑟)
]   (8) 

Value r in this study is fixed to 0.2 times the standard deviation of 

time series and m is set to two to enable fair comparison with ApEn. 

Similar to ApEn, larger values of SampEn indicate to more complexity 

in the data and vice versa. SampEn value decrease when epileptic 

discharge is presence in EEG (Song 2010). Implementation SampEn 

algorithm in MatLab is not much difference compare to ApEn 

procedure mentioned before, only in usage of Chebyshev to find 

distance between vector to exclude self matching case. 

Classification 
Support vector machine (SVM) is implemented as classification in 

this study due to its excellence ability in handling high dimensionality 

feature vector, flexibility in modelling diverse sources of data and high 

accuracy (Ben-hur & Weston 2010). SVM function by constructing a 

hyperplane with the largest margin to separate between two classes. 

Employment of radial basis function (RBF) with sigma of 1 as SVM 

kernel has advantage which it is the best in handling relation between 

attributes and class labels that are non-linear (Hsu et al. 2008). The 

SVM is implemented using MATLAB library function. 50 data were 

randomly selected as train data from each dataset. The remaining of the 

data are used as classifier data.  

RESULTS AND DISCUSSION 

Signal Complexity without MRA 
Initially, we computed the average complexity of the signal using 

each technique without the MRA. Table III demonstrate the complexity 

value of the methods for dataset A, B and C. 

Table 3 Complexity value of ApEn, LZ, HE, SE, KC and SampEn for each 

dataset. 

Complexity 

Measurement 

Dataset 

A B C 

ApEn 0.997 0.614 0.493 

LZ 0.069 0.066 0.023 

HE 0.657 0.603 0.435 

SE 2.373 2.460 5.511 

KC 0.544 0.344 0.383 

SampEn 1.011 0.618 0.496 

In Table 3, we observe the decreasing of complexity value in ApEn, 

LZ, HE and SampEn. Decrease of complexity value is due to presence 

epileptic discharge in the EEG signal. KC shows slight increase in Set 

C compare to Set B. However, SE tends to behave in the opposite 

manner and this finding is correlate with the study of brain complexity 

due to anaesthesia (Ferenets et al.,. 2006). HE characterize the Set A 

and B as correlated signal while the Set C is anti-correlated signal. Fig. 

4 support the trends of the complexity value between the three datasets. 

              (a)         (b)   

               (c)         (d) 

                 (e)         (f) 

Fig. 4 Graph trends of complexity value of each data set for (a) ApEn (b) 

LZ (c) HE (d) SE (e) KC (f) SampEn. 

Signal Complexity with MRA 

Next we implemented the MRA on the complexity measurement. 

The signal is decomposed into six sub-bands frequency. The 

complexity can be assessed in each sub-bands and the average 

complexity value is tabulated in Table 4. 
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Table 4 Average sub-band complexity value of ApEn, LZ, HE, SE, KC and SampEn for each dataset. 

ApEn 
LZ HE SE KC SampEn 

A B C A B C A B C A B C A B C A B C 

A

5 

0.23

9 

0.27

6 

0.23

1 

0.23

9 

0.27

6 

0.32

0 

0.75

5 

0.68

1 

0.65

4 

1.39

9 

1.86

6 

2.83

5 

0.10

9 

0.12

5 

0.14

2 

0.16

2 

0.19

1 

0.23

2 

D

5 

0.66

4 

0.64

7 

0.47

2 

0.66

4 

0.64

7 

0.65

4 

0.24

8 

0.24

8 

0.25

8 

0.84

0 

1.30

0 

3.94

6 

0.24

4 

0.23

8 

0.23

6 

0.43

6 

0.40

9 

0.47

4 

D

4 

1.16

9 

1.10

2 

0.56

5 

1.16

9 

1.10

2 

1.07

1 

0.05

0 

0.05

1 

0.05

5 

1.09

8 

1.20

2 

4.29

7 

0.37

5 

0.35

8 

0.35

4 

0.59

8 

0.54

7 

0.56

8 

D

3 

1.76

3 

1.68

4 

0.62

6 

1.76

3 

1.68

4 

1.62

6 

0.15

9 

0.16

2 

0.15

0 

1.19

0 

0.65

4 

3.92

9 

0.51

5 

0.50

1 

0.48

6 

0.81

0 

0.70

9 

0.63

2 

D

2 

2.11

6 

2.26

7 

0.59

8 

2.11

6 

2.26

7 

1.99

6 

0.05

6 

0.05

6 

0.07

5 

0.85

9 

0.27

2 

2.34

1 

0.61

1 

0.63

6 

0.59

1 

1.02

4 

0.92

9 

0.60

5 

D

1 

3.20

9 

3.27

9 

0.76

8 

3.20

9 

3.27

9 

3.19

8 

0.07

0 

0.12

9 

0.14

2 

0.02

4 

0.00

6 

0.53

4 

0.79

5 

0.80

9 

0.79

1 

1.57

3 

1.45

3 

0.77

6 

Graph of average complexity for all complexity measurements are 

plotted in Fig. 5. A rising pattern of complexity value can be observed 

in ApEn, LZ, KC and SampEn. These techniques exhibit close 

complexity value between Set A, B and C in lower sub-band frequency 

and the value are spreading at the higher frequency. On the other hand, 

SE shows a declining trend as the frequency increase. A huge gap can 

be observed between Set C with Set A and B, indicating the SE can 

distinguish seizure from normal and interictal very well. HE shows a 

random trend where it starts with steep decline in the lower frequency 

bands follows by fluctuation in higher frequency bands. 

Implementation of MRA with HE describes all the dataset as highly 

anti-correlated. This result contradicts to HE without MRA.  

(a)    (b)   

                                                 
                      (c)                                          (d) 

                         (e)                            (f) 

Evaluation of performance with and without MRA 
We compare the performance of the complexity measurement with 

and without MRA in terms of accuracy, sensitivity and specificity. The 

result is tabulated in Table V. MRA manage to increase the 

performance in some of the complexity measurement. In overall, ApEn 

and SE are the best techniques to be implemented with MRA as it will 

improve the accuracy, sensitivity and specificity in differentiating 

normal with interictal (Set A and B), normal with ictal (Set A and C) 

also interictal with ictal (Set B and C). SE is better than ApEn based on 

the higher accuracy in classification of Set A with B and Set B with C. 

However, ApEn has advantage as it takes into account the temporal 

order of points in a time sequence thus making it more preferred 

measure of complexity (Ocak 2009). Disadvantage of ApEn is it 

unsuitable to be applied for short time series data and it appears that 

SampEn is fit better for this task (Yentes et al. 2013). Other complexity 

measure shows a trade off in distinguishing between two groups when 

MRA is applied i.e. KC and SampEn exhibits lower accuracy in 

distinguishing Set A and B while improving the detection rate in 

between Set A and C and Set B and C. MRA affect LZ and HE the 

worst since it deteriorates the performance in differentiating Set A and 

C and Set B and C. 

Other effect of MRA is it tends to increase the computational time 

due to the increase of number of sub-band frequency or feature. The 

sub-band frequency is directly proportional to the number of level of 

decomposition, thus it is recommended to select the optimum number 

based on research requirement. A method of using sparseness 

measurement to select suitable level of decomposition is proposed (Lei 

et al. 2013). Simpler method in choosing level of decomposition is 

based on frequency range needed to be analysed (Deshprabhu & Shenvi 

2015). Level of decomposition can be selected based on classification 

to physiological band i.e. Delta, Theta, Alpha, Beta, Gamma (Shen et 

al. 2013). 

Fig. 6 represents the average time taken to compute an EEG signal 

with duration of 23.3 seconds and sampling rate of 173.61Hz. This 

study is conducted using computer with specification: Intel Pentium 

G3250 3.2Ghz, 8GB RAM on Window 7 operational system. A pattern 

can be observed that good method tends to have longer computational 

time. Longer computational time requires when processing using SE 

while HE has the shortest computational time. Computational time is 

crucial when developing epileptic discharge algorithm especially in 

intensive care environment. Based on Fig. 6, SE takes 2.9 seconds to 

process a signal. When MRA with 6 sub-band apply on the SE, 

approximately it will take 17.4 seconds to finish. It is inefficient to 

deploy this algorithm in Intensive Care Unit (ICU) with such duration. 

Thus, it is recommended to use more sophisticated computer or 

switching to another complexity measure with tolerable performance. 

Although algorithm such as LZ and KC take less computational time, 

it should be noted both need extra process to change the signal into 

binary sequence.
Fig. 5 Sub-band complexity value of each data set for (a) ApEn (b) LZ 
(c) HE (d) SE (e) KC (f) SampEn 
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Table V Comparison of performance based on percentage (%) of accuracy (Acc), sensitivity (Sens) and specificity (Spec) on non-MRA and MRA 
method. Asterisk (*) represent highest accuracy achieved. 

Non-MRA MRA 
Dataset AB AC BC AB AC BC 
Metric Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec 

ApEn 74 75 92.9 98 96.2 100 88 95.2 82.8 89* 91.5 86.8 100* 100 100 94* 95.8 92.3 

LZ 49 48 49.3 91* 95.6 87.3 89* 95.3 84.2 83* 80 86.7 86 90.9 82.1 88 88 88 

HE 65 60.9 74.2 89* 83.1 97.6 80* 73.4 91.7 70* 71.7 68.5 78 75.9 80.4 54 53.4 54.8 

KC 95* 90.9 100 92 86.2 100 52 51.1 58.3 84 85.4 82.7 95* 95.9 94.1 89* 86.8 91.5 

SE 69 63.8 80.6 100 100 100 96 98 94.2 98* 96.2 100 100* 100 100 97* 100 94.3 

SampEn 92* 90.4 93.8 98 96.2 100 59 58.8 59.2 88 89.6 86.5 100* 100 100 94* 95.8 92.3 

Fig. 6 Computational time of complexity technique in descending order 
of time. 

We have encounter difficulty in comparing different complexity 

measure of ApEn and SampEn due parameter values selection. The 

parameters were chosen according to the literature based on the similar 

application. Pattern length is fix to m=2 for ApEn (Srinivasan et al. 

2007) and SampEn (Yentes et al. 2013). For the criterion of similarity, 

r, there are varies of parameter value claims to be the best such that r = 

g x standard deviation of data where g = 0.1, 0.2, …, 0.5 (Jiang et al. 

2015; Song & Zhang 2013). Value of g=0.2 is decided for ApEn and 

SampEn to enable fair comparison although there might be possibility 

one measure performs better than another when using different value. 

CONCLUSION 

In this study, we have demonstrated the effect of MRA on 

complexity measurement of epileptic discharge shows improvement in 

detection, but it increases the computational time. ApEn and SE are the 

two most outstanding variables while HE and LZ is not suitable to be 

used in MRA implementation. Trade-off between performance and 

computational time must be balanced to obtain excellent epileptic 

discharge detection algorithm. Our finding showed ApEn has the best 

balance between performance and computational time when used with 

MRA. This combination is expected to be beneficial for neurologist in 

reducing diagnosing time for epilepsy patient. 
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