
Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.1 (2013) 51-56 

| 51 | 

ISSN 1823-626X 

Malaysian Journal of Fundamental and Applied Sciences 
available online at http://mjfas.ibnusina.utm.my

Combining multiple survival endpoints within a single statistical analysis 
Zakiyah Zain1 and John Whitehead2 
1Department of Mathematics and Statistics, School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia, UUM Sintok, Kedah, Malaysia. 
2Department of Mathematics and Statistics, Faculty of Science and Technology, Lancaster University, Lancashire, U.K. 

Received 6 December 2012, Revised 19 February 2013, Accepted 22 February 2013, Available online 26 February  2013 

ABSTRACT 

Multiple endpoints are common in survival data and this scenario complicates the analysis. For example, sets of responses concerned with survival 
times in a single clinical trial include: time to first cardiac event and time to death from any cause; time to loss of vision in the left eye and time to loss 
of vision in the right eye; and times from entry to a trial until the first, the second and the third asthma exacerbations. In a clinical trial evaluating the 
treatment effect of a new drug, often a single statistic is required to measure its overall performance. The cumulative treatment advantage is often 
measured by the score statistic for each endpoint. The aim of this paper is to develop methodology for combining multiple endpoints within a single 
statistical analysis that compares the responses of patients treated with a novel treatment with those of control patients treated conventionally. The focus 
is on interval-censored bivariate survival data, and a real dataset from previous study concerning multiple responses are used for illustration. In this 
paper we take a direct approach to combining the univariate score statistics for comparing treatments with respect to each survival endpoint. Recurrent 
events are considered in this investigation and the accuracy of the estimator is evaluated. The combined methodology is accurate, consistent and 
comparable to the established method of Wei, Lin and Weissfeld. 
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1.  INTRODUCTION 

In clinical trials, the main purpose is often to 
compare efficacy between experimental and control 
treatments. These treatment comparisons often involve 
several responses or endpoints, and this situation 
complicates the analysis. For example, sets of responses 
concerned with survival times in a single clinical trial 
include: time to first cardiac event and time to death from 
any cause; and times from entry to a trial until the first, the 
second and the third asthma exacerbations. One approach to 
simplifying the analysis would be to choose one of the 
survival times as a single primary endpoint. This is not 
always desirable in cases where the choice would be rather 
subjective or where the endpoints are of equal interest. A 
single parameter relating to an overall assessment is often 
required to give a solid justification of treatment advantage, 
and so separate analyses of more than one endpoint might 
not be appropriate.  

The cumulative treatment advantage is usually 
measured by the score statistic for each endpoint. In the 
case of bivariate survival data, the score statistics can be 
summed directly, but the variance is now affected by the 
dependence structure between two endpoints. To estimate 
the correlation coefficient, an approximate formula for the 
covariance between the two score statistics is derived for 
recurrent events data.  

This paper discusses the global score test 
methodology using a new approach of interval-censored 
data in estimating the correlation. Once the correlation is 
obtained, the overall treatment effect can be estimated. 
Accuracy of the method is evaluated and compared with the 
established method using both real data and simulations. 

2.  METHODOLOGY 

2.1  Global Score Test 

In an investigation of a treatment effect θ, an 
important sample statistic is the cumulative measure of the 
advantage of the experimental treatment, often denoted by 
Z. Its companion, denoted by V, indicates the amount of 
information about θ contained in Z. Statistically termed as 
the efficient score statistic, and Fisher’s information, Z and 
V, respectively, they can be calculated at any stage of a 
clinical trial. In survival analysis, the logrank test [1] is one 
of the most popular methods for testing the equality of two 
treatment groups. It is routinely used in the analysis of 
clinical trials comparing the time-to-event distribution of a 
group of patients randomised to an experimental treatment 
with that of a control group. When prognostic factors are to 
be adjusted for, Cox’s proportional hazards regression [2], 
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which is a direct generalisation of the logrank test, is 
commonly employed.  

In general, global test methodology can be defined 
as the use of a combined model to estimate a composite 
measure of treatment effect concerning multiple outcomes. 
A global null hypothesis, that the treatment has no effect on 
any of a number of patient responses, is tested. O’Brien [3] 
and Pocock, Geller and Tsiatis [4] have combined multiple 
binary endpoints and reported that global tests may increase 
the power to detect differences between groups. Global test 
methodology has been used successfully in major clinical 
trials involving binary data when multiple outcomes are 
concerned. It has been accepted in stroke studies, for its 
ability to yield a single parameter of treatment advantage, 
which is easily interpreted, as well as for its cost-saving 
benefit in terms of the trial size.  

In particular, use of a global test as a primary 
analysis for multiple binary outcomes, accompanied by 
secondary tests of individual outcomes, was implemented 
in the NINDS t-PA Stroke Trial [5]. Global testing was 
adopted also for the International Citicoline Trial in acUte 
Stroke (ICTUS) as reported by Davalos et al. [6] Moreover, 
Bolland et al. [7] concluded for larger samples that global 
tests gave accurate type I error rates and satisfactory power, 
even after adjustment for prognostic factors. Therefore, the 
global testing approach is attractive for research concerning 
situations in which two or more time-to-event responses are 
observed on each individual.  

Previous work has successfully determined the 
correlation between two score statistics arising from binary 
data or from ordered categorical data [8], but the case of 
survival data has proved difficult. An existing method for 
combining two or more survival analyses is the method of 
Wei, Lin and Weissfeld [9]. Unlike the logrank test, their 
approach does not directly condition on risk sets and does 
not reproduce the familiar form of logrank variance.  

An earlier approach using the logrank test proved 
difficult and therefore a new strategy is now proposed. In 
this new approach, the survival data are summarised within 
categories and analysed as interval-censored survival data. 
Using such a formulation, it is possible to determine the 
correlation, which serves as an accurate approximation to 
the correlation of the logrank statistics. Correlations 
between score statistics arising from interval-censored 
forms of the Cox model are investigated. Once an estimate 
for the correlation between two score test statistics is 
available, it has many applications. For example, combined 
null hypotheses, testing whether a linear combination of 
effects is equal to zero, and global null hypotheses, testing 
whether all effects are equal to zero, can be addressed. 
  
2.2 Interval-censored Survival Data 

 
Interval-censored survival data commonly occur in 

medical or health studies of non-fatal endpoints requiring 
regular follow-ups or inspections. Consider the case of 
tumour recurrence where no recurrence had been observed 
at a three months examination, but one was detected at a six 

months check-up. It is known that the event time is greater 
than three months and less than or equal to six months: 
3 6T< ≤  . Another common scenario of interval-censored 
data is present when continuous survival times are grouped 
into defined intervals prior to analysis. In practice, survival 
data are often observed to the nearest time unit: day, month 
or year, and hence the analyses are generally based on 
interval-censored data. Consequently, it is natural to 
consider the underlying survival variables as discrete in 
developing methods for their analysis. A survival text by 
Sun [10] provides a comprehensive coverage of the topic of 
interval-censored survival data. 
  
2.3  Bivariate Survival Data 

 
Bivariate survival data involves two endpoints which 

cannot be assumed to be independent, and one of the main 
interests in the analysis of bivariate survival data is the 
measure of dependence or association of these two 
variables. The complexity of studies concerning such 
correlated times-to-event which may involve multiple 
endpoints on the same subject, requires methods to take into 
accountthe correlation between multiple endpoints. For such 
data, the correlation between two score statistics can be 
used to obtain an overall treatment efficacy. 
 In dealing with correlated survival outcomes in 
cross-over trials, fixed effects models can be applied by 
fitting Cox’s proportional hazards regression model 
stratified by subject. However, in parallel group trials where 
patients are randomized to experimental and control 
treatments, these methods fail. To overcome this difficulty, 
recourse can be made to one of two methods, namely 
marginal and frailty modelling. Marginal modelling 
involves fitting data to Cox’s regression model without any 
assumption of correlation, and then adjusting the estimated 
variance of the coefficients. A frailty model is a random 
effects model for event time data where subject effects are 
modelled as random variables; a good description is given 
by Hougaard [11]. 
 
2.4  Estimating the Correlation 
 

The bivariate survival data are first categorized into 
multiple intervals, and then the covariance is obtained 
directly from two survival endpoints, say T1 and T2 for each 
subject. Based on the Cox’s model of proportional hazards 
assumptions, the score statistic Z and Fisher’s information, 
V are derived from complementary log log approach. 
Conditioning on successive risk sets, the covariance 
between two score statistics, Cov(Z1, Z2) is obtained by the 
summation of covariances from each pair of intervals, and 
is denoted by C12.  

The derivation of the covariance involves two parts: 
the marginal given by interval of individual event and the 
paired intervals of both events. To fully describe this, the 
following notations are necessary, where: 
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r1i = no. of patients at risk of event 1 at the end of interval i, 
o1i = no of patients who had event 1 at the end of interval i, 
r2j = no. of patients at risk of event 2 at the end of interval j,  
o2j = no of patients who had event 2 at the end of interval j, 
q1i = -log (1-o1i/r1i) and similarly q2j = -log (1-o2j/r2j). 
 
 The probability of occurrence for both events can be 
approximated by 

(12),( ) (12),( ) (12),( )ˆ / ,ij ij ijp o r=  and similarly for 
individual event, 

(1 ),( ) (1 ),( ) (12),( )ˆ /ij ij ijp o r• •= and 
( 2),( ) ( 2),( ) (12),( )ˆ /ij ij ijp o r• •= , 

where: 
(12),( )ijo  = no. of patients who had event 1 during interval i 

and also had event 2 during interval j, 
(12),( )ijr  = no. of patients at risk of event1 at the end of 

interval i and also at risk of event 2 at the end of interval j, 
(1 ),( )ijo •

 = no. of patients who had event 1 during interval i 
and also at risk of event 2 (but did not have event 2) during 
interval j, and 

( 2),( )ijo •
 = no. of patients who had event 2 during interval j 

and also at risk of event 1 (but did not have event 1) during 
interval i. 
 In our proposed method called ZW (Zain & 
Whitehead), the covariance of the two score statistics is 
estimated by 

{ }1 2
1 2 1 2 (12),( ) 1 2 (12),( ) (12),( ) (1 ),( ) ( 2),( )

1 2

ˆ ˆ ˆ( , ) ( )( ) .i j
i j iE jE ij C iC jC ij E ij ij ij

i j

q q
Cov Z Z r r r r r r p p p

o o • •= + −

Plugging the estimates of probability of occurrence of both 
events, the covariance estimator, denoted by C12(ij) is written 
as 

{ }1 2
1 2 (12),( ) 1 2 (12),( ) (12),( ) (12),( ) (1 ),( ) ( 2),( )

1 2 (12),( )
12( ) 2 ( )( ) .i j

iE jE ij C iC jC ij E ij ij ij ij
i j ij

ij

q q
C r r r r r r r o o o

o o r • •= + −

The theory states that for very large samples n → ∞, V1 → 
var(Z1), V2 → var(Z2), and the estimate C12 → cov(Z1, Z2). 
The covariance of each pair of intervals is summed to give 
the total covariance:  

12( )
1 1

12

u v

ij
i j

CC
= =

= ∑∑ .  

The correlation ρ between these two score statistics is 
expressed as 1 2 1 2cov( , ) / .Z Z VVρ = , and can be estimated by  

12 1 2
ˆ / .C VVρ =  

 Under the null hypothesis that the two treatment 
groups have identical survival experience, the experimental 
has zero treatment effect and the proportional hazards 
assumption is true. There exists a common treatment 
advantage, 

1 2θ θ θ= =  and under H0: θ 0= ; hence p-values 
are always valid. However, under the alternative, H1: 

1 2θ θ θ= = , but θ 0≠ . The logrank test is efficient in 
detecting such a proportional hazards alternative. When the 
assumption of equal treatment effect is met, the complex 
multivariate problem of analyzing the multiple endpoints is 
simplified to the univariate problem of comparing the 
common effect across the treatments. Even if the equality 
assumption is not met, the power should be good if the 

spread of θ is reasonably small. The estimated common 
treatment advantage is given by 

1 1 2 2
ˆ ˆ ˆw wθ θ θ= +  where w is 

some weighting with subscripts 1 and 2 for the 1st and 
2ndevents respectively, and w1 + w2 = 1. Since the endpoints 
are not independent, an optimal weighting [12] is employed 
as it yields the smallest variance out of all weighted 
averages of 

1θ and
2θ . 

 
2.5 Analysis of Recurrent Events 
 
 To illustrate for recurrent events, bladder cancer data 
sets based on a study conducted by the Veterans 
Administration Cooperative Urological Research Group is 
used. The complete data is listed in Wei, Lin, and Weissfeld 
[7]. The study comprises 86 patients with superficial 
bladder tumours, which were removed transurethrally when 
the patients entered the study; 48 were randomized into the 
placebo group (control), and 38 were randomized into the 
thiotepa group (experimental). The majority of patients 
experienced multiple recurrences of tumours during the 
study, and new tumours were removed at each visit. The 
original data set contains the first four recurrences of the 
tumour for each patient, and each recurrence time was 
measured from the patient's entry time into the study. 
However, our analysis setting is limited to the first and 
second recurrences, and only one covariate that is treatment 
group. Out of the 86 patients, 47 patients have only one 
tumour recurrence, while 29 patients have two recurrences. 
 Our method gives a correlation estimate of 0.619: 
compared to 0.643 as computed from the Wei Lin and 
Weissfeld (WLW) method. The estimates of overall 
treatment effect using ZW and WLW are 0.411 (s.e. 0.284, 
p = 0.169) and 0.401 (s.e. 0.232, p = 0.148) respectively. 
The sum of score statistics derived from this interval-
censored data are similar to the logrank statistics and their 
corresponding Fisher’s information in parentheses; Z1 = 
4.47 (4.09), Z2 = 3.94 (3.83), V1 = 11.82 (10.99) and V2 = 
7.35 (7.06). These results show that our method is 
comparable to WLW, but simulation study is the 
confirmatory. 
 
 
3.  SIMULATIONS 

 
To evaluate accuracy of each method, simulation 

with 20,000 replications is conducted for bivariate case of 
recurrent events. The estimated correlation values of each 
method are compared against the correlation values derived 
from its own samples. A fixed sample size, n = 1,000 are 
generated from a random uniform distribution U(0,1) and 
randomized equally to control, C, and experimental, E. 
Inputting the hypothetical values of λE(0) = 0.004 and λC(0) = 
0.006, the survival times, T1 and T2 (days) are generated 
from an exponential distribution, Tim~ EXP(λGexp(si)), 
where si is a subject effect for patienti, following a normal 
distribution N(0, σ2). The standard deviation σ of the subject 
effect is set to be d(logλC – logλE), where d is a constant 
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multiplier chosen to impose varying degrees of correlation: 
setting d = 1, 5 and 10, creates low, medium and high 
correlations, respectively.  

The Cox’s PH requires non-informative censoring 
such that the censoring is independent of the survival times. 
Therefore, assuming equal hazards, λC = λE = λ, an overall 
censoring variable, ~ (2 )iC EXP yλ  is applied to the whole 
data set (both patients on C and E), where { }/ 2(1 )y x x= −  
and x is the censoring proportion. It is to be recalled that, in 
general, patient i is censored for an event when Ci< Ti for 
that event. Based on the useful expression, V = bn, and also 
V = {(uα+ uβ)/ θ }2, the θ at which a given power is achieved 
can be determined by fixing the sample size n, and finding 
the constant b. The value of b is found to converge 
satisfactorily when n = 1 million. The type I error rate is 
targeted at 5% level (2-sided) and the power is aimed at 
90%; hence (uα/2 + uβ)2 = 10.51. The effect of increasing the 
standard deviation of the subject effect, σ is also 
investigated by varying the values of d. Each data set is 
generated based on the variables set for each value of σ, on 
each hypothesis. The score statistics, Fisher’s information 
and covariance for each interval are computed to yield the 
global score statistics and covariance estimator, C12. All 
simulation runs are replicated 10,000 times under each 
hypothesis, from which the average values are taken to be 
the best estimates.  
 
 
4.  RESULTS & DISCUSSION 
 
4.1     Simulation Results 
 
 Key performance measures considered are type I 
error, power and correlation ratio. For correlation ratio, an 

ideal situation is when the estimated correlation, ρ(est)is 
exactly the same as ρ(sample), the correlation observed from 
its own samples of 10,000. The estimate of the covariance 
between two score statistics, C12, is calculated from each 
replicate simulation and similarly for the correlation 
estimate ρ̂ . The average value of ρ̂  from the 10,000 
replicates, gives the best estimate, ρ(est). Since the “true” 
correlation is unknown, it is assumed that the correlation 
observed from its own samples of N, denoted by ρ(sample) 
gives the true correlation asymptotically. With N replicates 
of samples of size n, the sample covariance, Cov(Z1, Z2) can 
be obtained from the expression: 

1 2 1 2 1 2cov( , ) ( (( ) / ) / ( 1))Z Z Z Z Z Z N N= − −∑ ∑ ∑ .  
 The correlation derived from the sample covariance 
is given by

( ) 1 2 1 2cov( , ) / var( )varsample Z Z Z Zρ = . Therefore, the 
correlation ratio of both estimates, ρ(est)/ρ(sample), will be 
compared in investigating the properties of the correlation 
estimator and in evaluating the accuracy of this method. 

Table 1 shows that both methods give type I error 
rates within the 95% probability interval (0.022, 0.028). The 
power of our method is comparable to that of WLW. Both 
methods give power of equal or more than 0.89 (1-β = 0.90 
± 0.01) at low correlation (d = 1), but when a higher 
correlation is imposed by increasing the subject effect, the 
power reduces accordingly for both methods.  

With respect to the correlation estimates, Fig. 1 
shows accurate estimation of the correlation for WLW, with 
y = 0.9964x, while our method shows an underestimation of 
about 2%. Theoretical equality of the correlation between 
two estimates of treatment advantage and that between two 
score statistics is proven accordingly.  

 

 
Table 1.  Simulation results for ZW and WLW methods under the null and alternative hypotheses. 
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Fig. 1. Correlation ratios for ZW and WLW methods 
 
 
4.2    Discussion 
 
 ZW provides a conceptually straightforward 
approach to the analysis of general multivariate survival 
data. The benefits of our method are (i) ease of use: simple 
computation and (ii) good interpretability: straightforward 
derivation based on marginal analyses, unlike WLW which 
is based on non-standard adjusted statistics. By design, ZW 
is capable of analyzing naturally interval-censored data 
whereas WLW was not intended to cater for such data. 
Meanwhile the disadvantages are that it requires 
categorization into intervals, and consequently might lose a 
little power. Despite their technical differences, extensive 
simulations show that our new method is accurate, 
consistent and comparable to WLW in all scenarios 
investigated.  

The much emphasized issue of overestimation by 
WLW [13], is not solely due to the risk set definition, but 
rather an inevitable scenario when using total time 
convention. Kelly and Lim [13] also commented that the 
within subject correlation was not satisfactorily accounted 
for by employing the robust variance, but the reason is 
unknown. It was suggested that frailty model might be of a 
better choice and this topic could be further explored. 

The methodology for survival analysis of recurrent 
events has been applied in many diverse fields: numerous 
examples from medicine, manufacturing and the social 
sciences are given by Nelson [14]. Others include 
biostatistics [15], marketing [16], and sports [17] and even 
in political science [18]. 

 
 

5. CONCLUSION 
 

It is concluded that our method is accurate, 
consistent and comparable to the competitor. Workable for 
practical application on real data and comparable to WLW, 
our proven method ought to contribute a new alternative 

method of analyzing correlated survival data. Areas for 
further development include adjustment for combining 
survival and binary data, and implementation for multiple or 
sequential methods. Apart from medicine, other potential 
fields of application include manufacturing, engineering and 
social sciences.  
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