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Abstract 

An external fixator is normally used by medical surgeons in treating subtalar dislocation due to its 
biomechanical characteristics that can providing an adequate stability, preventing deformity (mal-
union and non-union), reduce rate of infections, and promoting fast healing process as compared to 
coventional internal fixator. Apart from the configurations and fixation techniques, previous studies 
has mentioned that the stability of external fixator can be altered and manipulated by using different 
materials, e.g. stainless steel, titanium alloy and polymer. To be noted, the current available research 
works that have been investigated on different materials of external fixator are still lacking, therefore, 
the present study is aims to conduct related study. The main objective of the research work is to 
simulate finite element model of foot and ankle joint associated with open subtalar dislocation in 
which treated with Mitkovic external fixator by using two different material properties; titanium alloy 
(Model 1) and stainless steel (Model 2). The three-dimensional model of foot and ankle joint were 
reconstructed using images of CT dataset. For the soft tissues, cartilages at the ankle joint were 
developed by offsetting the bone surfaces with 1 mm thickness while ligaments were modelled with 
linear links. Homogeneous and isotropic properties were assigned to the bone, Mooney-Rivlin model 
for cartilage and specific stiffness value for ligaments. In order to simulate stance phase during 
walking condition, an axial load of 350 N was applied to the proximal tibia bone. The results of von 
Mises stress demonstrated that Model 2 has a low magnitude (127 MPa) at the pin-bone interface of 
tibia bone, compared with Model 1 (369 MPa). As for the local displacement at the bony segment of 
fibula, Model 2 (3.3 mm) indicated high stability of the external fixator than Model 1 (7.4 mm). In 
conclusion, the use of stainless steel material for Mitkovic external fixator can provide adequate 
stability and optimum stress distribution. 

Keywords: Finite element, biomechanics, ankle dislocations, mitkovic external fixator, 
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INTRODUCTION 

Foot and ankle joint are located at the lower limb of a human 
body. The anatomy of the ankle foot is a complex joint construct as 
compared with other joints such as hip, elbow and knee. The common 
ankle injuries are associated with bone dislocations and fractures 
(Anwar, Tuson, & Khan, 2008; Bartolozzi & Lavini, 2004). The most 
injuries to the ankle joint is subtalar dislocations (Jerome et al., 2008). 
One of them is open subtalar dislocation, in which can be defined as 
open injuries where the ligaments at the lateral side of ankle are torn. 
Previous scholar (Golner et al., 1995) categorised it into four types; 
medial, lateral, posterior and anterior. The medial dislocations are the 
most common injuries where it is normally caused by the lateral 

displacement of the talus responding to an applied inversion force to 
the plantarflexed foot (Harris et al., 2008). Due to exessive force 
exerted to the foot, this causing the subtalar joint be discrupted, 
particularly to the lateral ligament to be torn. 

After a surgery, the medical surgeons do not allow patients to 
stand and walk (Ansah & Sella, 2000; Harris et al., 2008). However, 
this may causes in complications such as mal-union, non-union and 
deep vein thrombosis due to prolonged immobilization period (Hyder 
et al., 1997; Jerome et al., 2008). Therefore, a special device should 
be used to prevent the complications so that the patients could having 
fast healing procees to the injuries. The use of a medical device, called 
external fixator as a treatment of subtalar dislocation is popular 
amongst surgeons (Milenkovic et al., 2006; Mitkovic et al., 2005). 
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This device can prevent complication such as infections, deformities 
and loss of reduction. In treating subtalar dislocations, many medical 
experts disallow full weight bearing for patients after a surgery (Harris 
et al., 2008). However, this may cause in prolonged immobilization 
which can lead to deep vein thrombosis. Thus, the external fixator is 
introduced since this device allows the early mobilization of patients 
and preventing complications while supporting the ankle joint for 
ligament healing (Ansah & Sella, 2000). To dated, apart from other 
conventional constructs, the Mitkovic external fixator has becomes 
the most popular construct for treating open subtalar dislocations 
(Ansah & Sella, 2000; Milenkovic et al., 2006). This construct is 
based on unilateral external fixator with a system that provide three-
dimensional freedom where the pin placement should be fixed to the 
bone without the need of a special guide (Mitkovic et al., 2005; 
Mitkovic et al., 2005). As compared with other configurations of 
external fixator, the high flexibility of the uniplanar frame allows for 
one type of the frame to be converted into another during the 
intervention and from a rigid to a dynamic one without changing the 
position of the pins (Marsh et al., 1991). 

For treating open subtalar dislocation, stability of fixation and 
ankle joint is one of the main factors to ligament healing (Carroll & 
Koman, 2010; Golner et al., 1995). The fastest healing time for open 
subtalar dislocation injuries that treated with the external fixator was 5 
weeks from the first surgery (Ansah & Sella, 2000). The stability of 
external fixator can be demonstrated by applying a proper material 
(Carrigan, Whiteside, Pichora, & Small, 2003). Additionally, wrong 
selection of material can increase stresses and displacement at the pin-
bone interface and distal fibula, respectively, thus can increase rate of 
infections to the patients. The main function of the Mitkovic external 
fixator with different material properties has never been demonstrated 
in the literature. Therefore, there are two objectives of the present 
study; (1) to reconstruct three-dimensional ankle subtalar dislocation 
fixated with two different materials (stainless steel and titanium alloy) 
of Mitkovic external fixator and (2) to investigate the effect of stress 
and displacement during the stance phase of a gait cycle via finite 
element method. The results presented here could be used by medical 
surgeons and other researchers to justify the choices of suitable 
material used for external fixator. 

MATERIALS AND METHODS 

Development of ankle and foot bones 
The present study used previous CT data images (Izaha et al., 

2012) (slice thickness of 1.5mm in a 512 x 512 matrix) of healthy 
person to reconstruct the three-dimensional (3D) model of eight bones 
which include metatarsals, cuneiforms, navicular, cuboid, calcaneus, 
talus, fibula and tibia bone (Aarnes et al., 2006). The CT images of 
the right lower limb of a healthy volunteer (a 21 years old male) were 
used to differentiate two segments of bone, cortical and cancellous, by 
setting a threshold value of 700 (Yosibash et al., 2007). The value 
more than 700 was for corticol and less than 700 was for cancellous 
bone. A manual segmentation process was carried out using ‘edit 
masks’ tool in which to erase and draw the slices of images. The 
segmentation process continued with calculating 2D images into 3D 
model. An inspection process of the contact bone was carried out in 
order to provide adequate distance between the different bones by 
substracting each body via Boolean operations. For a region of 
interest, the tibia and fibula were cut approximately 20 cm above the 
medial tibia malleolus (Ramlee et al., 2013, 2014; Wang et al., 1995). 
The region of interest is acceptable as mentioned and used by 
previous scholars (Cheung et al., 2006; Wang et al., 1995). The 3D 
model of bones were saved in STL file for further pre-processing 
method. All of these steps were performed in Mimics 15.1 software 
(Materialise, Belgium). The flowchart of the development of 3D 
model of bone is as shown in Figure 1. 

Figure 1 The steps to reconstruct 3D model of bone 

Development of soft tissues 
For the ankle joint that consisted with many soft tissues, a proper 

methodology was conducted to construct 3D model of articular 
cartilages surrounding the joint. Articular surfaces of bones were 
extruded out with a uniform size of 1 mm (Cheung et al., 2006). As 
the authors using the same CT images, the same segmentation method 
as the development of bone was performed. Therefore, the 3D model 
of cartilage for calcaneus, talus, fibula and tibia were constructed via 
manual segmentation process (Carrigan et al., 2003). This includes 
using Boolean operations in Mimics software to check whether there 
is any intersection between two different cartilages at a bone joint. 
The boundary and geometry of the selected cartilages were based on 
previous studies (Akiyama et al., 2012; Millington et al., 2007). In the 
beginning of process, the extruded surface consisted of one layer only, 
then the second layer was constructed by offsetting the first layer with 
a value of 1 mm thickness. Some modifications were conducted due to 
the intersection between two rigid bodies of cartilage and this was 
repeated until the intersecting numbers become zero. To be noticed, 
there is no development of other cartilages around the forefoot and 
midfoot in the present study due to the fact that only small magnitude 
of load transfers to the foot joint during a normal gait cycle (Calhoun 
et al., 1994; Haraguchi et al., 2009). For the material properties, the 
cartilages were assigned with Mooney-Rivlin hyperelastic behaviour 
with coefficients of C01=0.41 MPa and C10=4.1 MPa (Bajuri et al., 
2012; Ramlee et al., 2013).  

The complexity of the ankle and foot joint model (Figure 3) came 
with thirty-seven ligaments surrounding the tissue. Two points were 
chosen in two different bones via a method of node-to-node to 
construct the ligaments. The ligaments were modelled using linear 
link elements and the stiffness value were set ranging from 40 to 400 
N/mm as shown in Table 1 (Aarnes et al., 2006; Beumar, Van Hemert 
et al., 2003; Iaquinto & Wayne, 2010; P. C. Liacouras & J.S. Wayne, 
2007; H. Pfaeffle et al., 1996; Siegler et al., 1988). In order to 
mimicking real geometrical conditions of ankle, multiple parallel links 
were utilised for better distributing the load from origin to another 
points. The positions of ligaments were based on an anatomy book 
and confirmed by a medical expert (Netter, 2003). All steps in 
developing the ligaments were performed through a finite element 
software, Marc.Mentat. 
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Table 1  Stiffness of the ligaments 

Ligaments represented in the models Stiffness(N/mm) 

Interosseous membrane (4 ligaments) 
400 (H. J. 

Pfaeffle et al., 
1996) 

Anterior tibiofibular (distal) 78 
Posterior tibiofibular (distal) 101 
Anterior talofibular 90 

Posterior talofibular 
70   (P.C. 

Liacouras & J.S. 
Wayne, 2007) 

Calcaneofibular 70 
Anterior tibiotalar 70 
Posterior tibiotalar 80 
Tibiocalcaneal 122 
Tibionavicular 40 
Interosseous talocalcaneal 70 
Lateral talocalcaneal 70 
Medial talocalcaneal 70 
Posterior talocalcaneal 70 
Dorsal talonavicular (2 ligaments) 70 
Calcaneonavicular (dorsal & plantar) 70 
Calcaeocuboid (dorsal & short plantar) 70 
Cuboideonavicular (dorsal & plantar) 70 
Cuneonavicular (dorsal & plantar) 70 
Intercuneiform (dorsal & plantar) 70 
Tarsometatarsal (dorsal & plantar) 70 
Metatarsal (dorsal & plantar) 70 
Medial plantar fascia 200 
Central plantar fascia 230 
Lateral plantar fascia 180 
Long plantar 70 

Modelling of Open Subtalar Dislocation 
Previous studies mentioned that lateral collateral ligaments were 

ruptured when patients suffered open subtalar dislocation (D'Anca & 
A.F., 1971; Fahey et al., 1965; Haines, 1939). Therefore, the open 
subtalar dislocation was simulated with an assumption of unexisted 
ligaments at the lateral collateral side (D'Anca & A.F., 1971; 
Daruwella, 1974; Fahey et al., 1965; Sloane & Coutts, 1937). These 
ligaments are the calcaneofibular, posterior talofibular and anterior 
talofibular (Figure 3). 

Development of External Fixator 
The Mitkovic external fixator was modelled and designed via 

three-dimensional computer aided design software, Solidworks 
software (Dassault, USA) with rods and pins size of 11 mm and 5 
mm, respectively. The dimensions of external fixator were refered to 
the available commercial product from Mitkovic as well as previous 
literature works (Ansah & Sella, 2000; Mitkovic et al., 2005; 
Mitkovic  et al., 2005). The fixator were then meshed with linear first 
order tetrahedral elements using 3-Matic 7.1 (Materialise, Belgium). 
Two pins were fixated at the tibia, one at the calcaneus and another 
pin at the first metatarsal bone to represent the Mitkovic construct as 
shown in Figure 2. 

Finite Element Modelling 
All STL files were then imported into Marc.Mentat 

(MSC.Software, USA) in order to convert the 3D model into linear 
first tetrahedral elements (Figure 3). A properties of 7300 MPa and 
Poisson’s ration of 0.3 (Nakamura et al., 1981) were assigned to the 
cortical bone while the material properties of cancellous bone were set 
to 1100 MPa and 0.3 (Kim, Kim, & Chang, 2011). In the present 
study, two different material properties of external fixator were used; 
Model 1 was developed using the Mitkovic titanium alloy and Model 
2 was developed using the Mitkovic stainless steel. These two models 
have Young’s modulus of 110,000 MPa (Benli et al., 2008) and 

200,000 MPa (Vasquez, Pedersen, Lidgren, & Taylor, 2003), 
respectively. Convergence study was conducted in the previous study 
(Ramlee et al., 2014a) and the findings showed that optimum mesh 
size for the bone was 3 mm and the external fixator was 1 mm. 

Figure 2 Three-Dimensional model of ankle and foot bone fixated with 
Mitkovic external fixator 

Boundary Conditions 
An axial load was applied to the proximal tibia bone. The load 

was based on a force taken from the gastrocnemius and soleus 
muscles during stance phase. During the stance phase of a gait cycle, 
50% of the body weight was generated (Cheung et al., 2005; Simkin, 
1982). In the present study, 350 N was applied based on the subject’s 
body weight of 70 kg. For preventing a movement of the rigid body 
during the simulated condition, all metatarsals and calcaneus bone 
were fixed. 

RESULTS AND DISCUSSION 

Von Mises Stress 
Figure 5 shows the contour plots of von Mises stress at the pin-

bone interface for tibia, calcaneus and metatarsal bone during the 
stance phase of a gait cycle. The maximum stress at Model 1 (369 
MPa) is greater than Model 2 (127 MPa) with at least 90% difference 
between both model at the second cortex of pin-bone interface. For 
the calcaneus bone, Model 1 (683 MPa) produced at least 2.9 times 
greater stress compared to Model 2 (262 MPa). On the other hand, the 
von Mises stress at the pin-bone interface of metatarsal bone for 
Model 1 (591 MPa) demonstrated larger magnitude than Model 2 (245 
MPa), with 82% difference between both models. In this study, the 
stress concentrated at the pin-bone interface was in agreement with 
previous studies(Brianza et al., 2011; Donaldson et al., 2012). The 
high stresses at this critical local point supported the decision made by 
medical surgeons fordisallowing patients to experience full weight 
bearing in clinical practice (Ansah & Sella, 2000; Dlimi et al., 2011; 
Harris et al., 2008). It is cruciate to note that a normal bone can 
sustain an axial load until the ultimate strength of 193 MPa (Pinner & 
Sangeorzan, 2001). Based on the results of the von Mises stress in the 
present study, it is not recommended for patients to walk and stand 
during treatment period.  

Contour plots of von Mises stress of external fixators with 
difference material properties from numerical simulation are shown in 
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Figure 5. The stress concentrated more in Model 2 (524 MPa) at the 
calcanues pin as compared to Model 1 (486 MPa). However, these 
peak values are still below the ultimate strength of titanium alloy 
(500-600 MPa) and stainless steel (800-900 MPa)(Gorsse & Miracle, 
2003; Hyde et al., 2010).From another view, the stress is also 
distributed at connecting bar, tibia pin and first metatarsal pin. 
Nevertheless, the stresses surrounding external fixator were below the 
peak values, which indicates that the Mitkovic frame is safe to be used 
for treating this particular pathological problem. 

Figure 3 Finite element model showing the ligaments were removed to 
simulate open subtalar dislocation 

Figure  4 Von Mises stress at the pin-bone interface 

Displacement 
Local displacement at the bony segments that are connected by 

calcaneofibular ligament as shown in Figure 6. Model 1 with material 
of titanium alloy demonstrated higher displacement of 7.4 mm as 
compared to Model 2 (3.3 mm). To be noted, the stability of the bone 
affected the healing process of ligaments. With higher magnitude of 
displacement, a time taken for ligaments to heal will be longer. 
Previous studies demonstrated the same situtation where the smaller 
displacement at the bony segment of ankle joint can minimize the 
time taken remove external fixator (Ansah & Sella, 2000; Golner et 
al., 1995; Ramlee et al., 2014a; Ramlee et al, 2014b). 

Figure 5 Contour plots of von Mises stress of Mitkovic external fixator 
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Figure  6 Contour plots of displacement at the local point of 
calcaneofibular ligaments 

External fixator is a favourable option for the management of 
open subtalar dislocation due to its minimally invasive property, able 
to provide adequate stabilization and less infection (Pinner & 
Sangeorzan, 2001; Seibert et al., 2003). Many scholars proved that 
stable fixation can hasten soft tissue healing during a treatment 
(Chandran et al., 2006; Seibert et al., 2003). A proper strategy should 
be taken properly by medical surgeons before a surgery can be made. 
One of the strategy is the selection of material of external fixator. 
Inability to provide a stable construct due to improper selection of 
material is the major cause of post surgery complications such as mal-
union, non-union, and secondary fracture at the pin-bone interface 
(Inokuchi et al., 1996; Vasquez et al., 2004). Based on the results 
from Figure 4, the secondary fracture could be happened at the pin-
bone interface of tibia, calcaneus and first metatarsal bone if the 
medical doctors allowing the patients to walk and stand during the 
treatment period. 

Several assumptions and limitationswere considered in the present 
study where these cannot be avoided when dealing with 
computational simulation. First, the geometrical condition of open 
subtalar dislocation was simplified and followed a normal patient 
condition. Though the dislocation can cause talus or calcaneus bone to 
be displaced from original position, however, the effect of these bones 
can only be simulated by using high resources of computer as well as 
CT data images from real patients. Nevertheless, the simulated of 
open dislocation and fracture bone were demonstrated by previous 
studies with an acceptable outcomes (Benli et al., 2008; Brianza et al., 
2011; Ezquerro et al., 2007; Izaham et al., 2012). The second 
limitations of the study was the assumption of linear isotropic and 
homogenous for both cortical and cancellous bone. To be noted, this 

limitation and assumption were normally used by the biomedical 
engineers and researcher to simulate the bone properties via finite 
element method (Izaham et al., 2012; P. C. Liacouras & J. S. Wayne, 
2007; Liu & Zhang, 2013). Therefore, it is recommended that future 
investigation can be performed using greyscale value of CT images to 
mimick real material properties of the bone.  

Another limitation in this study is the axial loading. A force value 
applied at the proximal tibia was simulated from Achilles tendon force 
during the stance phase of a gait cycle (Simkin, 1982), while the other 
structural muscles such as longus and brevis were not considered in 
this study due to its low magnitude of forces. In addition, the 
thickness of cartilages was another assumption where a uniform 
thickness of 1 mm were applied only for tibia, fibula, calcaneus and 
talus bone (Ramlee et al., 2014a). The rest ofcartilages around foot 
should be constructed in the future studies where this could influence 
the simulated results. 

CONCLUSION 

The present study simulated finite element model of open subtalar 
dislocation treated with Mitkovic external fixator with two different 
materials; titanium alloy and stainless steel. As compared with 
titanium alloy,the results obtained in terms of stress and displacement 
demonstrated that stainless steel material for the external fixator can 
provide adequate stability to the bony fragment as well as optimum 
stress surrounding bone tissue. However, extra care should be 
considered when allowing patients to walk and stand during the 
treatment to avoid complications especially secondary fracture at the 
pin-bone interface. 
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