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Abstract 

In this study, the mathematical modeling for the mixed convection boundary layer flow past a horizontal 
circular cylinder in a nanofluid with the presence of viscous dissipation effect is considered. The 
system of governing non-linear partial differential equations are first transformed to a more convenient 
form before being solved numerically using the Keller-box method. Numerical solutions are obtained 
for the reduced Nusselt number, Sherwood number and skin friction coefficient as well as the 
concentration, the temperature and the velocity profiles. The features of the flow and heat transfer 
characteristics for various values of the Eckert number, Lewis number, Brownian motion parameter, 
thermophoresis parameter, mixed convection parameter, concentration mixed convection parameter 
and Prandtl number are analyzed and discussed. It is suggested that the presence of buoyancy forces 
in mixed convection delayed the separation in assisting flow. Further, the Nusselt number decreases 
while Sherwood number increases with the increase of Brownian parameter, thermophoresis 
parameter and the Lewis number. It is worth mentioning that the results in this paper is important 
especially in understanding the nanofluid parameters behaviour as cooling medium in such 
applications like transformer liquid submersion system, power supply unit in supercomputer and liquid 
cooling for electronic components like capacitor and transistor. 
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INTRODUCTION 

The convective flow and heat transfer of a nanofluid have become a 

common topic discussed nowadays. Nanofluid is experimental proven 

enhanced the thermal conductivity, viscosity, thermal diffusivity and 

convective heat transfer compared to those base fluids like water and 

oil. It is applied widely in many applications for example as coolant 

medium in tire production and nuclear reactor, act as a smart fluid in 

battery devices, as a coolant in a car radiator, brake fluid, fuel catalyst 

to improve engine combustion and also act to cooling a microchip in 

electronic devices (Wong and De Leon, 2010). Many researchers have 

considered nanofluid as a medium of convective boundary layer flow 

in their studies such as Tham and Nazar (2012), Anwar et al. (2013), 

Roşca and Pop (2014), Mohamed et al. (2015), Hussanan et al. (2016) 

who investigated the steady and unsteady flow on stagnation point 

flow, stretching sheet, vertical surface, moving surface and solid sphere 

all filled with nanofluid, respectively. Recently, Jan et al. (2017), Khan 

(2017) and Kho et al. (2017) studied the thermal radiation and slip 

effect on MHD flow over a stretching surface and spherical shape 

which immersed in Williamson and engine oil nano liquid with 

molybdenum disulphide nanoparticles. 

The governing equations for the model of mixed convection on 

horizontal circular cylinder was solved numerically by Merkin (1977). 

The solution was obtained for Pr 1 and it was found that there exists 

a separation where there is no solution or the laminar boundary layer 

equations are not valid after the separation point. Jain and Lohar (1979) 

considered the unsteady case for this topic. The variations of mean 

Nusselt number with time were shown and discussed. The unsteady 

case with the introduction of double diffusion within a porous medium 

was then studied by Kumari and Nath (1989) while Aldoss et al. (1996) 

considered the magnetohydrodynamic (MHD) effects. Next, Nazar et 

al. (2003) extended the work by Merkin (1977) to a micropolar fluid 

while Anwar et al. (2008) considered the similar problem for a 

viscoelastic fluid. The point of separation for the boundary layer, 

effects of Prandtl number and mixed convection parameter were 

discussed. Both problems were solved by using the Keller-box method. 

Further, Salleh et al. (2010) investigated the mixed convection 

boundary layer flow past a horizontal circular cylinder with Newtonian 

heating boundary condition. Other researchers who considered this 

topic including Ahmad et al. (2009), Nazar et al. (2011), Rashad et al.

(2013) and Roşca et al. (2014) who studied the effect of temperature 

dependent viscosity on the mixed convection flows past a horizontal 
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circular cylinder embedded in a porous medium filled by a nanofluid 

with convective boundary condition and dual solutions for the mixed 

convection boundary layer flow close to the lower stagnation point of a 

horizontal circular cylinder, respectively. Recently, Udhayakumar et al.

(2016) and Mohamed et al. (2016) solved the effects of viscous 

dissipation and magnetohydrodynamic on the mixed convection over 

an isothermal circular cylinder in viscous and nanofluid, respectively. 

In many investigations above, the viscous dissipations is neglected. 

According to Gebhart (1962), the viscous dissipation or internal friction 

is the rate of the work done againts viscous forces is irreversibly 

converted into internal energy. It is known that the effect of viscous 

dissipation is significant especially for high velocity flow. The 

characteristics of the viscous dissipation are commonly represented by 

Eckert number which usually denoted as Ec.  

Therefore, based on the above-mentioned studies, this paper 

investigates the effect of viscous dissipation on the mixed convection 

boundary layer flow past a horizontal circular cylinder in a nanofluid 

with constant wall temperature (CWT). To the best of our knowledge, 

this problem has never been considered before, so that the results 

reported here are new. 

MATHEMATICAL FORMULATIONS 

Fig. 1  Physical model of the coordinate system. 

Consider a horizontal circular cylinder of radius ,a which is heated 

to a constant temperature wT and embedded in a nanofluid with ambient 

temperature T as shown in Fig. 1. The orthogonal coordinates of x

and y are measured along the cylinder surface, starting with the lower 

stagnation point 0,x  and normal to it, respectively. Under the 

assumption that the boundary layer approximations is valid, the 

dimensional governing equations of mixed convection boundary layer 

flow are (Merkin, 1977; Nazar et al., 2003; Salleh et al., 2010): 
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subject to the boundary conditions  
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where u and v are the velocity components along the x and y axes, 

respectively.  is the dynamic viscosity,  is the kinematic viscosity, 

g is the gravity acceleration,  and c are the thermal and 

concentration expansion coefficient, T is the local temperature,  is 

the fluid density and pC is the specific heat capacity at a constant 

pressure.  

Furthermore, wC is the nanoparticle volume fraction C at the 

surface, C is the ambient nanoparticle volume fraction, BD is the 

Brownian diffusion coefficient, TD is the thermophoresis diffusion 

coefficient,  is the ratio of the effective heat capacity of the 

nanoparticle material and the heat capacity of the base fluid. The 

external flow ( )eu x is given by 
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Next, the governing Eqs. (1) – (4) are first transformed to non-

dimensional form, therefore the following non-dimensional variables 

are introduced:  
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where  and  are the rescaled dimensionless temperature and 

nanoparticle volume fraction of the fluid and Re
U a


 is Reynolds 

number. Then Eqs. (1) – (4) becomes 
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Eqs. (8)-(11) contain many dependent variables which make the set of 

equations difficult to solve. Hence, the following non-similarity 

functions are introduced:  

 

( , ), ( , ), ( , ),xf x y x y x y          (13) 

where   is the stream function defined as u
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which identically satisfies (8). By substituted Eq. (13) into Eqs. (8)-

(11), the following partial differential equations are obtained: 
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The physical quantities of interest are the skin friction coefficient ,fC  

the local Nusselt number xNu  and the local Sherwood number xSh

which are given by  
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The surface shear stress ,w  the surface heat flux wq  and the surface 

mass flux wj are given by  
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with k being the thermal conductivity, respectively. Using Eqs. (7) and 

(13) give   
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RESULTS AND DISCUSSION 
 

The partial differential equations (14)-(16) subject to the boundary 

conditions (17) were solved numerically using the Keller-box method.  

Keller-box method is found to be powerful, efficient, easy to use and 

very suitable to solve the non-linear parabolic partial differential 

equation. Further, it can be modified to solve problem in any order.  

Seven parameters were considered, namely the Prandtl number Pr,the 

mixed convection parameter , the concentration mixed convection 

parameter , the Brownian motion parameter ,bN the thermophoresis 

parameter ,tN  the Lewis number Le  and the Eckert number .Ec  The 

step size 0.02, 0.005y x    and the boundary layer thickness 

8y  and x   are used in obtaining the numerical results. Table 1 

shows the comparison values of the reduced Nusselt number 
1/ 2Rex xNu 

 with previous results for various values of x . From Table 

1, it is seen that the results are in a very good agreement therefore, it is 

concluded that Keller-box method works efficiently and provides 

accurate results for the present problem. 
 

Tables 2 and 3 present the values of  the reduced Nusselt number
1/ 2Rex xNu 

and the reduced Sherwood number
1/ 2Rex xSh 

with 

various values of x and  . From both tables, it is found that the 

increase of x  results in the decrease of 
1/ 2Rex xNu 

 and 
1/ 2Rex xSh 

. 

At a stagnation region  0 ,x  1/ 2Rex xNu 
 and 

1/ 2Rex xSh 
achieve 

their maximum values. Physically, both quantities decrease which 

means the reduction in convective heat and mass transfer capabilities 

across the cylinder surface. As tables goes to the right, the value of 
1/ 2Rex xNu 

 and 
1/ 2Rex xSh 

increase with .  From the numerical 

results, as expected the opposing buoyancy flow shows a separation 

which contribute to turbulence flow. From the numerical calculations, 

it is found that the increase of  delays the boundary layer separation 

(Merkin , 1977). Further, it is suggested that 1   gives no separation 

to the boundary layer flow. 

 

Table 1 Comparison values of 
1/ 2Rex xNu 

 with previous published results for various values of x  and   when Pr 1, 0.b tN N Le Ec       

 

/x   

-1.0 0 1.0 

Nazar 
(2003) 

Merkin 
(1977) 

Present 
Nazar 
(2003) 

Merkin 
(1977) 

Present 
Nazar 
(2003) 

Merkin 
(1977) 

Present 

0 0.5080 0.5067 0.5067 0.5710 0.5705 0.5705 0.6160 0.6156 0.6156 
0.2 0.5022 0.5018 0.5015 0.5658 0.5658 0.5668 0.6125 0.6115 0.6125 
0.4 0.4862 0.4865 0.4859 0.5560 0.5564 0.5562 0.6031 0.6028 0.6036 
0.6 0.4584 0.4594 0.4585 0.5380 0.5391 0.5387 0.5880 0.5885 0.5890 
0.8 0.4140 0.4160 0.4144 0.5130 0.5145 0.5139 0.5673 0.5686 0.5687 
1.0 0.3259 0.3326 0.3281 0.4808 0.4826 0.4817 0.5414 0.5435 0.5432 
1.2    0.4406 0.4426 0.4414 0.5105 0.5133 0.5126 
1.4    0.3909 0.3928 0.3912 0.4750 0.4785 0.4774 
1.6    0.3262 0.3280 0.3258 0.4354 0.4394 0.4381 
1.8    0.2049 0.2114 0.2043 0.3924 0.3967 0.3951 
2.0       0.3465 0.3509 0.3492 
2.2       0.3002 0.3029 0.3013 
2.4       0.2515 0.2540 0.2526 
2.6       0.2040 0.2061 0.2051 
2.8       0.1636 0.1634 0.1632 
3.0       0.1397 0.1354 0.1364 


 
      0.1380 0.1306 0.1323 
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Table 2 Values of 
1/ 2Rex xNu 

with various values of x and  when Pr 1, 0.1b tN N Ec     and 10.Le 

/x  -1.0 -0.5 0 0.5 1.0 2.0 

0 0.4487 0.4806 0.5062 0.5278 0.5467 0.5789 
0.2 0.4431 0.4755 0.5010 0.5224 0.5409 0.5721 
0.4 0.4259 0.4610 0.4865 0.5072 0.5247 0.5531 
0.6 0.4000 0.4379 0.4640 0.4838 0.4998 0.5240 
0.8 0.3598 0.4074 0.4351 0.4544 0.4687 0.4878 
1.0 0.2906 0.3695 0.4017 0.4213 0.4341 0.4478 
1.2 0.3214 0.3647 0.3863 0.3984 0.4072 
1.4 0.2452 0.3238 0.3508 0.3636 0.3688 
1.6 0.2753 0.3148 0.3304 0.3341 
1.8 0.2026 0.2772 0.2989 0.3040 
2.0 0.2354 0.2685 0.2780 
2.2 0.1831 0.2383 0.2555 
2.4 0.2077 0.2353 
2.6 0.1774 0.2163 
2.8 0.1497 0.1978 
3.0 0.1293 0.1784 
 0.1219 0.1628 

Table 3 Values of 
1/ 2Rex xSh 

with various values of x and  when Pr 1, 0.1b tN N Ec     and 10.Le 

/x  -1.0 -0.5 0 0.5 1.0 2.0 

0 1.1085 1.2185 1.3043 1.3756 1.4370 1.5402 
0.2 1.0959 1.2092 1.2969 1.3695 1.4321 1.5370 
0.4 1.0551 1.1818 1.2752 1.3518 1.4173 1.5271 
0.6 0.9891 1.1346 1.2383 1.3214 1.3920 1.5096 
0.8 0.8770 1.0645 1.1845 1.2773 1.3549 1.4830 
1.0 0.6627 0.9660 1.1120 1.2183 1.3049 1.4460 
1.2 0.8257 1.0183 1.1434 1.2414 1.3974 
1.4 0.5840 0.8994 1.0521 1.1684 1.3368 
1.6 0.7448 0.9441 1.0742 1.2646 
1.8 0.5060 0.8188 0.9729 1.1821 
2.0 0.6736 0.8631 1.0917 
2.2 0.4953 0.7481 0.9959 
2.4 0.6323 0.8979 
2.6 0.5218 0.7997 
2.8 0.4256 0.7022 
3.0 0.3570 0.6026 
 0.3317 0.5260 

Table 4 Values of 
1/ 2Rex xNu 

and
1/ 2Rex xSh 

for various values of x and when Pr 1, 1, 0.1b tN N Ec     and 10.Le 

/x 
-1.0 -0.5 0 

1/ 2Rex xNu  1/ 2Rex xSh  1/ 2Rex xNu  1/ 2Rex xSh  1/ 2Rex xNu  1/ 2Rex xSh 

0 0.5298 1.3704 0.5378 1.4020 0.5452 1.4314 
0.2 0.5244 1.3642 0.5322 1.3965 0.5395 1.4263 
0.4 0.5093 1.3462 0.5167 1.3800 0.5234 1.4113 
0.6 0.4860 1.3153 0.4927 1.3519 0.4987 1.3855 
0.8 0.4566 1.2704 0.4627 1.3109 0.4678 1.3479 
1.0 0.4234 1.2101 0.4290 1.2559 0.4333 1.2971 
1.2 0.3883 1.1333 0.3940 1.1861 0.3978 1.2326 
1.4 0.3525 1.0389 0.3591 1.1011 0.3630 1.1543 
1.6 0.3158 0.9254 0.3248 1.0012 0.3297 1.0629 
1.8 0.2763 0.7892 0.2907 0.8871 0.2980 0.9601 
2.0 0.2255 0.6044 0.2553 0.7593 0.2670 0.8482 
2.2 0.2165 0.6166 0.2359 0.7306 
2.4 0.1691 0.4478 0.2041 0.6115 
2.6 0.1722 0.4971 
2.8 0.1432 0.3982 
3.0 0.1237 0.3344 
 0.1192 0.3199 

Table 4 shows the values of 
1/ 2Rex xNu 

and 
1/ 2Rex xSh 

with 

various values of x and . It is found that opposing flow of 

concentration mixed convection parameter provided the separation. 

Further, from Table 4, the increase of  may delayed the separation.  

Figs. 2 to 9 are illustrated in order to understand the effects of 

parameters discussed on temperature profiles ( ),  velocity profiles

( )f  and concentration profiles ( )  as well as their boundary layer 

thicknesses at a stagnation region  0 .x  From Figs.2 to 4, it was 

found that the increase of ,  and Pr reduces the thermal boundary 

layer thickness while the nanofluid parameter which are  and  

enhances the thicknesses. At the stagnation region, it is worth 


, bLe N t

N
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mentioning that the viscous dissipation does not give any effect to the 

flow field as well as heat transfer characteristic. 

Fig. 2 Temperature profiles y ( ) against y for various values of 

and Le when 0.1b tN N Ec   and Pr 1. 

Fig. 3 Temperature profiles  y ( ) against y   for various values of 

values of Pr and when 1, 0.1b tN N Ec     and 10.Le 

Fig. 4 Temperature profiles  y ( ) against y   for various values of 

values of bN and tN when Pr 1, 10Le     and 0.1.Ec 

Figs. 5 and 6 show the velocity profiles ( )f  at a stagnation region 

 0x  for various values of  and  respectively. From 

Fig. 5, the increase of contributes to the increase of the velocity 

gradient which results in the increase of skin friction coefficient. 

Further, it is suggested that the presence of gravitational forces in the 

mixed convection results the increase of boundary layer thickness. It is 

clear from Fig. 5 that the opposing buoyancy flow  0  contributes 

to the increase of boundary layer thickness. In Fig. 6, the effect of  

and  is very small on velocity profiles. The increase of 
b

N reduced 

the boundary layer thickness while  enhanced the thicknesses. 

Fig. 5 Velocity profiles f y( ) against y   for various values of  and 

Le when 0.1b tN N Ec   and Pr 1. 

Fig. 6 Velocity profiles f y( ) against y for various values of values of 

bN and tN when Pr 1, 10Le     and 0.1.Ec 

Fig. 7 Concentration profiles y( ) against y for various values of 

and Le when 0.1b tN N Ec   and Pr 1. 
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Fig. 8 Concentration profiles y( ) against y   for various values of 

values of Pr and when 1, 0.1b tN N Ec     and 10.Le 

Fig. 9 Concentration profiles y( ) against y   for various values of 

values of bN and tN when Pr 1, 10Le     and 0.1.Ec 

The concentration profiles ( )  at a stagnation region  0x  for 

various values of and  are plotted in Figs.7 to 9, 

respectively. From figures, it is clearly shown that the increase of 

and  results to a decreasing of concentration. This is 

due to weak mass diffusivity effect compared to a thermal diffusivity 

in  which lead to a reduction of volume fraction. Meanwhile, as 

increases, the concentration increases.  

Next, Figs. 10 to 13 show the variations of  
1/ 2Rex xNu 

and 

1/ 2Rex xSh 
for various values of  and  respectively. 

From Figs. 10 and 12, 
1/ 2Rex xNu 

and 
1/ 2Rex xSh 

decreases as the 

flow passes through the body of cylinder. It is seen that the increase of 

and  results in a decreasing manner of 
1/ 2Re .x xNu 

The effects 

of  and  are more pronounced at the stagnation region  0 .x 

This is due to the no slip properties of stagnation region which allowed 

the maximum ability of heat and mass transfer between cylinder surface 

and the fluid. This property also causes zero skin friction at a stagnation 

region as depicted in Fig. 15. Further, the unpredictable polar of 
1/ 2Rex xSh 

for various values of  is seen in Fig. 12. Meanwhile, as

  increases, 
1/ 2Rex xSh 

also increases. 

Fig. 10 Variation of 
1/ 2Rex xNu 

against x for various values of bN and 

tN when Pr 1, 10Le     and 0.1.Ec 

In Fig. 11, it is clearly shown that at the stagnation region  0 ,x 

1/ 2Re 0x xNu   for all values of  In the middle of cylinder, the 

effects of  is more pronounced. For some values of   ie;  

increases at the middle of the cylinder before 

decreasing back to the end of cylinder. For  it is suggested that 

1/ 2Rex xNu 
decreases with x along the cylinder. In summary, 

1/ 2Rex xNu 
decreases as  and increases.  

Fig. 11 Variation of 
1/ 2Rex xNu 

against x for various values of  

andLe Ec when Pr 1, 0.1b tN N   and 1.  

Differ with Fig. 12, the increase of  and in Fig. 13 gives the 

increase of 
1/ 2Re .x xSh 

Similar trends also occur with Fig. 11, where 

the uniqueness of 
1/ 2Rex xSh 

at a stagnation region and significance 

effect of  at the middle of the cylinder. The uniqueness 
1/ 2Rex xNu 

and 
1/ 2Rex xSh 

is due to the elimination of viscous dissipation effects 

at the stagnation region  0 .x  Further, it is worth to state that the 

effects of  is very large at a stagnation region where 
1/ 2Rex xSh 

increases as  increases which physically denotes enhancement of 

mass transfer capabilities. Lewis number  effects is slowly 

decreasing as the flow passess through the cylinder.   
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Fig. 12 Variation of 
1/ 2Rex xSh 

against x for various values of bN and 

tN when Pr 1, 10Le     and 0.1.Ec 

Fig. 13 Variation of 
1/ 2Rex xSh 

against x for various values of 

andLe Ec when Pr 1, 0.1b tN N   and 1.  

Fig. 14 Variation of 
1/ 2Ref xC against x for various values of  and

when Pr 1, 0.1b tN N Ec    and 10.Le 

Lastly, Figs. 14 to 16 displayed the variation of  
1/ 2Ref xC against 

x for various values of parameters. From Fig. 14, for all  it is found 

that 
1/ 2Ref xC is unique  1/ 2Re 0f xC  at a stagnation region before 

increasing dramatically as x increases. For which has a separation 

point, 
1/ 2Ref xC is then decreased back to  approach 0 just before it 

reaches the separation value. Note that, the increase of  results in the 

increase of 
1/ 2Ref xC at any point of .x Next, it is noticed that the 

presence of assisting buoyant for concentration  has delayed 

the separation to occured. From numerical analysis, for  in the 

absence of , the separation occur as early at  The presence 

of  has delayed the separation to  

In Figs. 15 and 16, it was found that at the early stage of the 

cylinder, 
1/ 2Ref xC is unique for all parameter  and Ec. 

The effects of and Ec are more pronounced as x

increases to the middle until to the end of cylinder body. Further, it is 

clearly shown that the increase of  and Ec results in the increase of

1/ 2Ref xC while  and  does contrary. It is suggested that in 

convective boundary layer flow on horizontal circular cylinder, these 

no skin friction  1/ 2Re 0f xC  that occurs at a stagnation region due 

to the no slip effect and 
1/ 2Ref xC tends to be maximum at the middle 

of the cylinder due to the slip effect properties before decreasing back 

as fluid flow through the end of cylinder body.  

Fig. 15  Variation of 1/ 2Ref xC against x for various values of bN and 

tN when Pr 1, 10Le     and 0.1.Ec 

Fig. 16 Variation of 
1/ 2Ref xC against x for various values of andLe Ec

when Pr 1, 0.1b tN N   and 1.  
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CONCLUSION 

In this paper, the problem of mixed convection boundary layer flow 

on a horizontal circular cylinder in a nanofluid with viscous dissipation 

effects and constant wall temperature is numerically studied. It was 

found that the present of gravitational forces in mixed convection 

parameter  and results in the increase of the velocity gradient at the 

surface, and thus increase the skin friction coefficient beside delayed 

the flow separation. As the flow passes through the cylinder, the skin 

friction coefficient increased from origin to the middle of the cylinder 

before decreasing back to the end of cylinder. Finally, the presence of 

gravitational forces has also increased the velocity boundary layer 

thickness in opposing flow.  

Furthermore, the increase in the thermophoresis parameter  

Lewis number  and Eckert number  results in the increase of 

Sherwood number while Nusselt number decreased which physically 

denoted as the enhancement in mass transfer capabilities while reduced 

the convective heat transfer capabilities.  

At the stagnation region, the value of skin friction coefficient is 

unique for all parameters  and  The effects of 

and  are more pronounced as  increases to the 

middle until to the end of the cylinder body. 
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