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ABSTRACT 

Automata act as classical models for recognition devices.  From the previous researches, the classical models of automata have been used to scan strings 
and to determine the types of languages a string belongs to.  In the study of automata and group theory, it has been found that the properties of a group 
can be recognized by the automata using the automata diagrams.  There are two types of automata used to study the properties of a group, namely 
modified finite automata and modified Watson-Crick finite automata.  Thus, in this paper, automata diagrams are constructed to recognize permutation 
groups using the data given by the Cayley table.  Thus, the properties of permutation group are analyzed using the automaton diagram that has been 
constructed.   Moreover, some theorems for the properties of permutation group in term of automata are also given in this paper. 
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1. INTRODUCTION 

Since finite automata were first studied by Kleene in 
1950 [1], finite automata theory have been widely used in 
the theories and applications of computer science and 
mathematics [2, 3]. Mainly, finite automata are considered 
as recognition devices for the strings of formal languages. 

A classic model of automaton consists of a finite set 
of states, an input alphabet (a finite set of symbols), a 
transition function, the initial state and a finite set of final 
states.  However, the “classic” automata have the limitation 
of computational power as they can recognize only the 
regular languages [3].  Therefore, many types of finite 
automata have been developed to overcome this limitation.  
A new variant of finite automata with two reading heads 
and two input tapes that has been developed based on the 
concept of the classical model of finite automata, called 
Watson-Crick finite automata, for the recognition of double 
stranded strings which are the abstractions of DNA 
molecules [4]. 

In our previous papers [5, 6], we have studied 
various properties of groups using finite automata and 
Watson-Crick finite automata. In particular, we have shown 
that the data given in the Cayley tables of Abelian groups 
can be recognized by both types of automata.  

We have found that some properties of Abelian 
groups can also be obtained from automata transition 
diagrams.  In this paper, we investigate the recognisability 
of the permutation groups by finite automata and Watson-
Crick finite automata. 

Moreover, we analyse some properties of 
permutation groups using modified deterministic finite 
automata over permutation groups and modified Watson-
Crick finite automata over permutation groups.  In addition, 
we present an example of a finite automaton (the transition 
diagram) which recognizes the permutation group of the 
symmetric group of order six, S3. 

The paper is organized as follows: in Section 2 we 
recall some basic definitions and notations which are used 
in sequence. We introduce the modified versions of 
deterministic finite automata and Watson-Crick finite 
automata over permutation groups in Section 3. We show 
that several properties of permutation groups can be 
analysed using modified deterministic finite automata and 
modified Watson-Crick finite automata in Section 4. 
Finally, we summarize our results in Section 5. 

2. PRELIMINARIES  

We assume that the readers are familiar with the 
basic concepts of formal language theory and group theory.  
For further information, readers can refer to [7-9] for 
formal language theory and [10-12] for group theory.    

Definition 1 ([1]) 

A deterministic finite automaton is defined by  

M = (Q, Σ, δ, q0, F), 

where, 
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− Q is a finite set of internal states, 
− Σ is a finite set of symbols called an input alphabet, 
− q0 ∈ Q is the initial state, 
− F ⊆ Q is a set of final states, 
− δ: Q × Σ →Q is a transition function. 

 
Definition 2 ([13]) 
 
A Watson-Crick finite automaton is a 6-tuple  

M = (Q, ρ, Σ, s0, F, δ) 

where,  
− Σ is an alphabet, 
− Q is a set of internal states,  
− ρ ⊆ Σ×Σ is a symmetric relation (the complementarity 

relation), 
− s0 ∈ Q is the initial state, 
− F ⊆ Q is a set of final states, 
− δ: Q × (Σ, Σ) →2Q is a transition function such that  

(s, (x, y)) ≠ ∅ only for finitely many triples (s, x, y)∈ 
Q × Σ × Σ. 

 
Definition 3 ([7])  
 
A transition diagram is a diagram with a finite number of 
vertices and arrows for the edges between two vertices, 
such that vertices represent the states, the arrows represent 
the transition functions and the labels on the edges are 
current values of the input symbol. 
 
Definition 4 ([7]) 
 
A string is said to be accepted by an automaton if the 
automaton is in one of its final states when the end of the 
string is reached.  For the string which is not accepted by 
automaton then it is said to be rejected. 
 

Next, we cite the definitions of modified 
deterministic finite automata and Watson-Crick finite 
automata over Abelian groups, and explain the recognition 
of permutation groups by these types of automata in 
examples. 

   
Definition 5 ([6]) 
 
Let G be an Abelian group.  A modified deterministic finite 
automaton over G are defined as  

M = (Q, Σ, G, q0, F, δ), 

where,  
− Q ⊆ G is a finite set of internal states, 
− Σ ⊆ G is a finite set of symbols called an input 

alphabet, 
− q0 ∈ Q is the initial state, 
− F ⊆ Q is a set of final states, 

− δ: Q × Σ →Q is a transition function such that with the 
Cartesian product of Q and Σ, a binary operation “∗” 
of the group is associated. 

 
Definition 6 ([6]) 
 
Let G be an Abelian group. A modified Watson-Crick finite 
automaton over G are defined as 

     M = (Q, Σ, ρ, G, s0, F, δ), 

where, 
− Q ⊆ G is a finite set of internal states, 
− Σ ⊆ G is an input alphabet, 
− ρ ⊆ Σ × Σ is the complementarity relation, 
− s0 ∈ Q is the initial state, 
− F ⊆ Q is a set of final states, 
− δ: Q × (Σ, Σ) →Q is a transition function such that 

with the Cartesian product of Q and (Σ, Σ), a binary 
operation “∗” of the group is associated. 

 
For the Cayley table, all data of the group are written 

in the table. So, a group is said to be accepted by an 
automaton if the Cayley table of the group is recognized by 
the automaton.  
 In the following examples, we construct the 
automata diagrams of a modified finite automaton and 
modified Watson-Crick finite automaton over Abelian 
groups, which recognize the Abelian group of ℤ2 and the 
direct product of Abelian group ℤ1× ℤ4 respectively.  
 
Example 1 
 
For the group ℤ2 = {0, 1}, its Cayley table is illustrated in 
Table 1. 
 
  Table 1. Cayley table for ℤ2 

 
+ 0 1 
0 0 1 

1 1 0 
 

Then, the group ℤ2 can be recognized by an 
automaton whose transition diagram is shown in Fig. 1. 
 
 

 
 

 
Fig. 1.  A transition diagram of the automaton for ℤ2 

 
 
Example 2 
 
Given a group < ℤ1× ℤ4, + > where  

ℤ1 × ℤ4 = {0} × {0, 1, 2, 3}. 

1 
0 0 

1 
0 1 
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Then, ℤ1 × ℤ4 = {(0, 0), (0, 1), (0, 2), (0, 3)} and the Cayley 
table of ℤ1×ℤ4 is shown in Table 2. 

 
 

Table 2. Cayley table for ℤ1 ×  ℤ4 

 

+ (0,0) (0,1) (0,2) (0,3) 
(0,0) (0,0) (0,1) (0,2) (0,3) 
(0,1) (0,1) (0,2) (0,3) (0,0) 
(0,2) (0,2) (0,3) (0,0) (0,1) 
(0,3) (0,3) (0,0) (0,1) (0,2) 

 
 

Using the Cayley table, we can construct an 
automaton recognizing the group. The transition diagram is 
shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. A transition diagram of the automaton for ℤ1× ℤ4. 
 

 
3. AUTOMATA DIAGRAMS FOR PERMUTATION 

GROUPS  
 

Before we relate automata to permutation groups, we 
give the definition of a permutation group.   
 
Definition 7 ([10]) 
 
Given a non-empty set X; a permutation of X is a bijection 
α: X → X.  The set Sx of all permutation of X under the 
composition of mappings is called permutation group. 

 
Next, we define modified versions of finite automata 

and Watson-Crick finite automata which recognize 
permutation groups. 
 
Definition 8 
 
Let P be permutation group.  A modified deterministic finite 
automaton over P is defined as  

M = (Q, Σ, P, q0, F, δ), 

where, 
− Q ⊆ P is a finite set of internal states, 

− Σ ⊆ P is a finite set of symbols called an input 
alphabet, 

− q0 ∈ Q is the initial state, 
− F ⊆ Q is a set of final states, 
− δ: Q × Σ →Q is a transition function such that with the 

Cartesian product of Q and Σ, a binary operation “∘” 
(the compositions of maps) of the group is associated. 

 
It immediately follows that for any permutation 

group, one can easily construct a modified deterministic 
finite automaton which accepts the permutation group.  As 
an example, we construct the transition diagram of an 
automaton accepting the permutation group S3. 
 
Example 3 
 
Given a finite set A = {1, 2, 3}.  The group of all 
permutations of A is denoted by S3.  Thus,  

S3 = {(1), (123), (132), (23), (13), (12)}. 

For short, we denote the permutation group S3 by  

S3 = {ρ0, ρ1, ρ2, µ1, µ2, µ3}. 

The Cayley table for S3 is shown in Table 3. Thus, we 
can construct the transition diagram of an automaton for the 
permutation group of S3 based on the Cayley table as 
illustrated in Fig. 3. 

For the direct product of permutation groups we can 
also construct a modified variant of Watson-Crick finite 
automata which recognizes the direct product of 
permutation groups. 

 
Definition 9 
 
Let P be a permutation group. A modified Watson-Crick 
finite automaton over P is defined as  

M = (Σ, 𝜌𝜌, Q, P, s0, F, δ), 

where, 
− Σ ⊆ P is an input alphabet, 
− 𝜌𝜌 ⊆ Σ × Σ is the complementarity relation, 
− Q ⊆ 𝜌𝜌 is a finite set of internal states, 
− s0 ∈ Q is the initial state, 
− F ⊆ Q is a set of final states, 
− δ: Q × (Σ, Σ) →Q is a transition function such that 

with the Cartesian product of Q and (Σ, Σ), a binary 
operation “∘” of the group is associated. 

 
The recognition of modified Watson-Crick 

automaton is illustrated in Fig. 4 for S2 × S2. 
 

Example 4 
 
Given the direct product of permutation groups S2 × S2, such 
that  

S2 × S2 = {((1), (1)), ((1), (12)), ((12), (1)), ((12), (12))}. 

 (0,0)  (0,1)  (0,2)  (0,3) 

(0,0) 

(0,2) 

(0,1) 

(0,0) 

(0,0) 

(0,0) 

(0,3) 

(0,1) 

(0,3) 

(0,1) 

(0,2) 

(0,3) 

(0,3) 

(0,2) (0,2) 

(0,1) 
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The Cayley table for S2 × S2 is shown in Table 4. The 
transition diagram of an automaton for S2 × S2 is shown in 
Fig. 4. 

 
 
 

 
Table 3. Cayley table for permutation group S3 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
Fig. 3. Automaton diagram for permutation group of S3. 

 
 

 
Table 4. Cayley table for permutation group S2 × S2 

 

 
 

 
 
 
 
 
 
 
 
 
 

∘ ρ0 ρ1 ρ2 µ1 µ2 µ3 
ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3 

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2 
ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1 

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2 

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1 

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0 

°  ((1), (1)) ((1), (12)) ((12), (1)) ((12), (12)) 

((1), (1)) ((1), (1)) ((1), (12)) ((12), (1)) ((12), (12)) 

((1), (12)) ((1), (12)) ((1), (1)) ((12), (12)) ((12), (1)) 

((12), (1)) ((12), (1)) ((12), (12)) ((1), (1)) ((1), (12)) 

((12), (12)) ((12), (12)) ((12), (1)) ((1), (12)) ((1), (1)) 

      ρ0 
 

ρ2 µ1 µ2 µ3 ρ1 
ρ0 

ρ0 ρ0 ρ0 ρ0 

ρ0 

ρ1 

ρ2 

µ1 

µ2 

µ3 

ρ1 

µ1 

ρ2 

µ2 

µ3 

ρ1 

µ1 

ρ2 

µ3 

µ2 

ρ1 

µ1 

ρ2 

µ2 

µ3 

ρ1 

µ1 

ρ2 

µ2 

µ3 

ρ1 

µ1 

ρ2 

µ2 

µ3 
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Fig. 4. The transition diagram of an automaton for permutation group S2×S2 
 
 

Again, it is easy to show that for each direct product 
of two permutation groups, one can construct a modified 
Watson-Crick automaton over a permutation group for the 
direct product of permutation groups. Moreover, we can 
analyse some properties of permutation groups using the 
transition diagrams of the corresponding automata.   

 
 
4. SOME PROPERTIES OF PERMUTATION 

GROUPS IN TERMS OF AUTOMATA 
 

In this section, we show that several properties of 
permutation groups can be expressed in terms of properties 
of the transition diagrams, for the corresponding modified 
finite automata.   
 
Lemma 1 
 
For a modified deterministic finite automaton over a 
permutation group P, the element assigned to a transition is 
the identity element of the permutation group if and only if 
the transition is a self-loop transition of a state, i.e., a 
transition eij = (ai, aj) is labelled by the identity element if 
and only if ai = aj for some ai, aj ∈ P. 
   
Proof. Let b be an element of the group P associated with 
the transition eij from node ai to node aj such that  

b∈{bk : δ(ai,bk) = aj, for all ai, aj ∈ Q and bk ∈ Σ}. 

By construction, if δ(ai,bk ) = aj then aj = ai ∘ bk . 
Thus, bk = ai

-1 ∘ aj.  Suppose that ai =aj, then bk = aj
-1 ∘ aj 

and we can easily conclude that aj
-1 ∘ aj is the identity 

element of the permutation group P.  Therefore, b is the 
identity element associated with eij.  

Conversely, suppose that the label of the transition 
from node ai to node aj is the identity element b of the 
permutation group. By definition, δ(ai, b) = aj. On the other 
hand, ai ∘ b = aj. Since b is the identity element, ai ∘ b = ai, 
it follows that aj = ai, correspondingly, δ (ai, b) = ai.     � 

Lemma 2 
 
For a modified deterministic finite automaton M over a 
permutation group P, if the transition is not self-loop, then 
the element associated with the transition from node ai∈Q 
to aj∈Q is the inverse of the element associated with 
transition from node aj∈Q to ai∈Q, i.e., if eij = (ai, aj) is 
labelled by b∈P then eji = (aj, ai) is labelled by b-1.    
Proof. Suppose that a transition eij = (ai, aj) is not self-loop 
(i ≠ j), then there is an element b1 such that δ(ai, b1) = aj. By 
definition,  

ai ∘ b1 = aj. (1) 

On the other hand, for the transition eji = (aj, ai), there is an 
element b2 such that δ(aj, b2) = ai. By definition,  

aj ∘ b2 = ai. (2) 

Substitute (2) into (1), 

(aj ∘ b2) ∘ b1 = aj. 

By the group associativity law, 

aj ∘(b2 ∘ b1) = aj. 

By cancellation law,  

(aj)-1 ∘ aj ∘ (b2 ∘ b1) = (aj)-1 ∘ aj. 

Thus, b2 ∘ b1 is the identity element, i.e., (b2)-1 = b1. The 
identity of b1 ∘ b2 can also be shown by using similar 
arguments.      � 
 
Theorem 1 
 
If P is a permutation group of n elements, then P is 
recognized by a modified deterministic finite automaton M 
with n! states and (n!)2 transitions.  
    
Proof. Let P be a permutation group of n elements. Then |P| 
= n!. Let M be a modified deterministic finite automaton 

    
((1), (12)) 
 

((1), (12)) 

 

 ((1), (1)) ((1), (12)) ((12), (1))   ((12), (12)) 

((1), (1)) 

 

((12), (1)) 

 

((12), (12)) 

 
((1), (1)) 

 

((1), (1)) 

 

((1), (1)) 

 

((12), (12)) 

 
 

((12), (12)) 

  

((12), (1)) 

 

((12), (12)) 

((12), (12)) 

 

((12), (1)) 

 
((12), (1)) 

 

((1), (12)) 
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accepting P. By Definition 8, M also has n! states. For each 
state ai of M, there is one self-loop transition by Lemma 1, 
one outgoing transition to each state aj with i ≠ j and one 
incoming transition from each state aj with i ≠ j by Lemma 
2. Then the total number of transitions is  
 

|Q| × |Q| = |P |× |P| = (n!) × (n!) = (n!)2.    � 

 
The similar relationships between the direct products 

of permutation groups and modified Watson-Crick finite 
automata over permutation groups can be obtained by using 
the same arguments of the proofs of Lemmas 1, 2 and 
Theorem 1. 
 
Lemma 3 
 
For a modified Watson-Crick finite automaton over a 
permutation group P1×P2, the element assigned to a 
transition is the identity element of the direct product P1×P2 
if and only if the transition is a self-loop transition of a 
state, i.e., a transition eij = (ai, aj) is labelled by the identity 
element if and only if ai = aj for some ai, aj ∈ P1×P2 .         � 
 
Lemma 4 
 
For a modified Watson-Crick finite automaton M over a 
permutation group P1×P2, if the transition is not self-loop, 
then the element associated with the transition from node 
ai∈Q to aj∈Q is the inverse of the element associated with 
transition from aj∈Q to node ai∈Q, i.e., if eij = (ai, aj) is 
labelled by b∈P then eji = (aj, ai) is labelled by b-1.         � 
 
Theorem 2 
 
A permutation group P1×P2 with |P1| = n!, |P2| = m! is 
recognized by a modified Watson-Crick finite automata 
with (n!)(m!) states and ((n!)(m!))2 transitions.        �                   
  
 

5. CONCLUSIONS 
 
 In this research, the relation between the Cayley 
tables of permutation groups and finite automata is studied. 
A modified version of deterministic finite automata and 
modified Watson-Crick finite automata are defined and the 
relations are explained in examples. It is also shown that 
permutation groups and the direct products of permutation 
groups can be simulated by deterministic finite automata 
and Watson-Crick finite automata if the set of states and the 
alphabet of an automaton are defined as subsets of a 
permutation group. Since this paper is one of the 
preliminary works in this direction there are many open 
questions and a lot of interesting topics for future research: 
 
• From Theorems 1 and 2 one can notice that the 

descriptional complexities of automata are not optimal. 
Thus, it is interesting to check the possibility of 

minimizing the number of states and transitions of 
automata constructed in Theorems 1 and 2. 

• Since this work shows that permutation groups are 
simulated by modified automata, it is of interest to 
investigate the properties of permutation groups using 
automata. 

• It is also interesting to generalize the ideas considered 
in this paper and papers [4, 5] for any type of finite 
groups, and to show the possibility of the construction 
of finite automata accepting finite groups. 

• The introduction of “group related automata” is also 
interesting in formal language theory: we can define 
the families of languages accepted by group which are 
related to automata and investigate their properties. 
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