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ABSTRACT 

An analysis has been carried out to investigate the effect of magnetic field presence on the mixed convection boundary layer flow of viscoelastic fluid 
over a horizontal circular cylinder in a porous medium. The governing non-similar partial differential equations are transformed into dimensionless 
forms and then solved numerically using the Keller-box method. Some important parameters have been discussed in this study which include the 
Prandtl number (Pr), magnetic parameter (M), viscoelastic parameter (K), porosity parameter ( γ ) and the mixed convection parameters ( λ ). The 
results show the values of the velocity decrease when the value of viscoelastic parameter increase and the reverse trend were observe for temperature 
profile. Numerical results of local skin friction as well as local Nusselt number are also presented in tabular form. 
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1.  INTRODUCTION 

The interest of flows in viscoelastic fluids has grown 
considerably because of their applications in engineering 
and several industrial-manufacturing processes involving 
petroleum drilling, manufacturing of foods and papers. On 
the other hand, this type of fluidsalso have applications 
involving atomization such as paints, coating, inks, jet fuels 
and possible to reduce frictional drag on the hulls of ships 
and submarines. The boundary layer theory for viscoelastic 
fluids, which is similar to second-grade fluids, was 
developed by a few researchers since the last few decades 
[1-3]. The differential governing equations of the 
viscoelastic fluid problems are an order higher than those 
for the Newtonian (viscous) fluid and the adherence 
boundary conditions are insufficient to determine the 
numerical solution completely. Therefore, a boundary 
condition is needed in addition to the usual adherence 
boundary conditions [4-7]. Recently, the research on 
magnetohydrodynamic(MHD) in fluid flow have attracted 
many researchers due to its potential applications in 
engineering and industrial fields. Magnetohydrodynamic 
power generators and accelerators, cooling of nuclear 
reactors and crystal growth are included in this area.  
Accordingly, a considerable amount of research has been 
done on the effects of the electrically conducting fluids such 
as liquid metals, water mixed with a little acid and others in 
the presence of transverse magnetic field on the flow and 
heat transfer characteristics over various geometries. One of 
MHD research is heat convection in a magnetized 
electrically conducting layer [8]. The MHD is the science of  

the motion of electrically conducting fluids under magnetic 
fields. This situation is essentially one of mutual interaction 
between the fluid velocity field and the electromagnetic 
field; the motion affects the magnetic field and the magnetic 
field affects the motion. Thus, the term MHD attempts to 
convey this relationship [9]. Some researchers have 
investigated on MHD flow problems in non-Newtonian 
fluid focussing on viscoelastic fluid [10-14]. The transport 
of heat in porous medium is a process involving the 
application in a broad spectrum of disciplines ranging from 
chemical engineering to geo-physics. Many metallurgical 
processes involve the cooling of continuous strips or 
filaments by drawing them through a quiescent fluid. One of 
the group researchers have studied heat and mass transfer 
for Soret and Dufour’s effect on mixed convection 
boundary layer flow over a stretching vertical surface in a 
porous medium filled with a viscoelastic fluid[15]. In the 
same year, another group of reseachers carried out the 
investigation on flow and heat transfer characterictics of 
viscoelastic fluid in a porous medium over an impermeable 
stretching sheet with viscous dissipation using the power 
series method (using Kummer’s function) [16]. Very 
recently, an investigation on analytic solution of homotopy 
analysis method for MHD viscoelastic fluid flow and heat 
transfer in a channel with a stretching wall has been done by 
Raftari and Vajravelu [17]. They obtained the analytical 
solutions in the form of infinite series and the convergence 
of the series solution is discussed explicitly. Based to the 
above review, this present paper aims to study the effects of 
magnetic field presence on mixed convection boundary 
layer flow in viscoelastic fluid past a circular cylinder with 

*Corresponding author. E-mail: sharidan@utm.my (S. Shafie) 
Tel:(60)-7-5534465Fax : (60)-7-5566162 

http://mjfas.ibnusina.utm.my/
Tel:(60)-%207-5534465


Shafie et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.1 (2013) 22-27 

 
| 23 | 

 

constant temperature in porous medium. The governing 
equations are solved numerically by using the Keller box 
method. 

 
 

2.0  MATHEMATICAL FORMULATION 
 

The problem of MHD mixed convection boundary 
layer flow for an isothermal horizontal circular cylinder 
placed in a viscoelastic fluid is studied. Figure 1 illustrates 
the geometry of the problem and the corresponding 
coordinate system.It is assumed that the constant 
temperature of the surface of the cylinder is wT and the 
ambient fluid temperature is T∞ , where wT T∞> corresponds 
to a heated cylinder (assisting flow) and wT T∞<
corresponds to a cooled cylinder (opposing flow), 
respectively.  
 
 
 
 
 
 
 
 
 
 

 
Fig.1.Physical model and coordinate system. 

 
It is assumed that the Boussinesq and boundary layer 

approximations are valid. Under these assumptions, the 
equations governing the steady mixed convection boundary-
layer flow are; 
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The Cartesian coordinates  x  is measured along the 

surface of the cylinder starting from the lower stagnation 
point of the cylinder and y  is the coordinate measured 

normal to the surface of the cylinder. u and v  are the 
velocity components along the x −  and y − axes and ( )eu x
is the velocity outside the boundary layer. 
 
The non-dimensional variables are introduced as follows: 
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where Re = U∞a/v is the Reynolds number.  
 
Substituting Equation (5) into Equations (1–4), the 
following non-dimensional equations are obtained; 
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where Pr is the Prandtl number, Gr is the Grashof number, 
K is the viscoelastic parameter, λ  is the mixed convection 
parameter, γ is porosity parameter and Mis the magnetic 
parameter which are defined as: 
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It is noticed that when λ > 0, the problem involves 

assisting flow ( wT >T∞ ) and when λ < 0, the problem 
involves the opposing flow ( wT <T∞ ). 
 
 
3.0 SOLUTION PROCEDURE  
 

Following Merkin [19], it is assumed that eu ( x ) =
sin x . In order to solve Equations (6–8), the following 
similarity variables are introduced: 
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Substituting Equations (11) and (12) into Equations (6-8), 
the resulting equations are obtained: 
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subject to the boundary conditions: 
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At the lower stagnation point of the cylinder ( x 0≈ ), 
Equations (12) and (13) are reduced into the following 
ordinary differential equations: 
 

( )
2

2

''' '' ' 1 (M+ )( ' 1)

K 2 ' ''' '' 0,iv

f f f f f

f f f f f

γ λθ+ − + − − +

+ − − =
(16)              

1 '' ' 0,
Pr

fθ θ+ =     (17)                                 

 
with the boundary conditions: 
 

(0) '(0) 0, (0) 1,
'( ) 1, ''( ) 0, ( ) 0.

f f
f f

θ
θ

= = =
∞ = ∞ = ∞ =

             (18)                                             

   
In practical applications, the physical quantities of principal 
interest are the local skin friction coefficient and the local 
Nusselt number, which are defined as 
 

''(0), '(0).fx xC xf Nu θ= = −  (19)   
 
     
4.0  RESULTS AND DISCUSSION 

 
Equations (13) and (14) together with Equations (16) 

and (17) which were subjected to boundary conditions (15) 
and (18), respectively have been solved numerically using 
an efficient implicit finite-difference method known as the 
Keller-box scheme by Cebeci and Bradshaw (1988). The 
solution is obtained in the following four steps: discretize 
the governing equations using finite difference method, 
linearize the resulting algebraic equations by Newton’s 
method, write them in matrix-vector form and finally, solve 
the linear system by the block-tridiagonal-elimination 
technique. The numerical solution is obtained at some x  
around the cylinder starting from the forward stagnation 
point ( 0x ≈ ) for some values of mixed convection 
parameter, λ , magnetic parameter, M, porosity parameter, 
γ  and viscoelastic parameter, K. The step size for x and η  
is 0.01 and 0.025, respectively. At every point, the iteration 
process goes on until the convergence criterion for all the 
variables, 610− , is attained. 

An extension of previous works has been performed 
to investigate the heat transfers of a viscoelastic fluid flow 
over a horizontal circular cylinder which includes the 
magnetic effect in porous medium. In order to check the 
validity of the present work, the values of Nux andCfx as 
given by Equation (19) are compared with those of Anwar 
et al.[7]in Table 1 for M 0= , 0γ =  at Pr=1 with 0λ =  and 
1 and the various values of viscoelastic parameter, K. It is 
seen that the results are found to be in excellent agreement. 
Therefore, the validity of the present results is proven to be 
in parallel with existing work. 

Figs. 2 and 3 show the distribution of velocity and 
temperature profile respectively. It shows that, an increase 
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in the porosity parameter, γ  leads to decrease in the 
velocity and increase the temperature profile. Further, Figs. 
4 and 5 show the distribution of velocity and temperature 

profile respectively. It can be seen that, the velocity is 
increased by increasing the value of magnetic field, M, 
while opposite trend is shown for the temperature profile.  

 
 

Table 1.Comparison of values of 0f ''( )  and  0'( )−θ for various values of K when λ =  0 and 1 and for Pr = 1 and M=0. 

K 
 

Anwar et al.[7] Present result Anwar et al.[7] Present result 
λ = 0 λ = 1 

f"(0)  -θ'(0) f"(0)  -θ'(0) f"(0)  -θ'(0) f"(0)  -θ'(0) 
0 1.232632 0.570519 1.232632 0.570519 1.736738 0.615601 1.736738 0.615601 
0.01 1.221447 0.569130 1.221447 0.569130 1.718552 0.613861 1.718552 0.613861 
0.1 1.134172 0.558175 1.134172 0.558175 1.580229 0.600089 1.580229 0.600089 
0.2 1.058180 0.548077 1.058180 0.548077 1.464141 0.587800 1.464141 0.587800 
0.4 0.945907 0.532036 0.945907 0.532036 1.298364 0.568851 1.298364 0.568851 
0.6 0.864985 0.519487 0.864985 0.519487 1.182212 0.554389 1.182212 0.554389 
0.7 0.832019 0.514101 0.832019 0.514101 1.135550 0.548256 1.135550 0.548256 
0.9 0.776511 0.504626 0.776511 0.504626 1.057711 0.537559 1.057711 0.537559 
1 0.752803 0.500411 0.752803 0.500411 1.024719 0.532833 1.024719 0.532833 
2 0.596874 0.469671 0.596874 0.469671 0.810695 0.498821 0.810695 0.498821 
3 0.510914 0.449922 0.510914 0.449922 0.694301    0.477261 0.694301    0.477261 
4 0.454295 0.435499 0.454295 0.435499 0.617991    0.461601 0.617991    0.461601 
5 0.413321 0.424228 0.413321 0.424228 0.562865    0.449394 0.562865    0.449394 
10 0.303669 0.389777 0.303669 0.389777 0.415342    0.412127 0.415342    0.412127 

 
 

 
Fig.2. Velocity profile for λ  = 1, Pr = 1, K = 1 M=1 and 

various values of γ (porosity parameter) 
 
As we can see for the large value of magnetic field, the 
profile of velocity and temperature did not show any 
difference. We can say that the magnetic effect is not good 
enough for a larger magnetic force.As illustrated in  
Figs. 6 and 7, as mixed convection parameter increases, we 
found that the velocity profiles also increase while the 
temperature profiles decrease. The velocity and temperature 
profiles for various value of visoelastic parameter, K are 
plotted in Figs. 8 and 9 respectively. From these figures it 
can be seen that, the values of the velocity decrease when 
the value of viscoelastic parameter increase and the reverse  
 

 
 
trend were observe for temperature profile. This behaviour 
is also similar to the problem of stagnation-point flow of a 
viscoelastic fluid towards a stretching surface investigated 
by Mahapatra and Gupta [18].  

 
Fig. 3. Temperature profile for λ  = 1, Pr = 1, K = 1 M=1 

and various values of γ (porosity parameter) 
 
 

5.  CONCLUSION 
 

A steady two-dimensional mixed convection of an 
incompressible viscoelastic mixed convection boundary 
layer in porous medium in the presence of magnetic field 
was studied. The governing boundary layer equations are 
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transformed into non-dimensional form and the resulting 
nonlinear system of partial differential equations was 
solved numerically using the Keller-box method. The 
comparison of the numerical results of local skin friction 
and local Nusselt number shows an excellent agreement 
with previous publication. Present results show that, as both 
mixed convection and magnetic parameter increase, the 
distribution of velocity decreased while the temperature 
increased. Moreover, the numerical values of local skin 
friction, local Nusselt number and both distribution of 
velocity and temperature profile vary with increasing 
viscoelastic and porosity parameter.  

 

 
Fig. 4.Velocity profile for λ  = 1, Pr = 1, K = 1 γ =0.1 and 

various values of M (magnetic parameter) 
 

 
Fig. 5. Temperature profile for λ  = 1, Pr = 1, K = 1, 
γ =0.1 and various values of M (magnetic parameter) 

 
Fig. 6. Velocity profile for M = 0.5, Pr = 1, K = 1 γ =0.1 
and various values of λ  (mixed convection parameter) 

 

Fig. 7. Temperature profile for M = 0.5, Pr = 1, K = 1, 
γ =0.1 and various values of λ  (mixed convection 

parameter) 
 

Fig. 8. Velocity profile for M = 0.5, Pr = 1, λ  = 1 γ =0.1 
and various values of K (viscoelastic parameter) 
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Fig. 9. Temperature profile for M = 0.5, Pr = 1, λ  = 1 γ
=0.1 and various values of K (viscoelastic parameter) 
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