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Abstract 

The set defined on X represented by    , ( ) , where .AA x x x X is called a fuzzy subset A of 

.X It is not always possible for membership functions of type   01: [ , ]A X to associate with each 

point x in a set X a real number in 01[ , ] without the loss of some useful information. The 

importance of the ideas of “belongs to” ( ) and “quasi coincident with” ( )q relations between a fuzzy 

set and fuzzy point is evident from the research conducted during the past two decades. Ordered  -

semigroup is a generalization of ordered semigroups and plays a vital role in the broad study of 

ordered semigroups. In this paper, we provide an extension of fuzzy generalized bi   ideals and 

introduce  ( , )kq fuzzy generalized bi   ideals of ordered   semigroup. The purpose of this 

paper is to link this new generalization with generalized bi   ideals by using level subset and 
characteristic function. 

Keywords: Generalized bi   ideal, ordered   semigroup, fuzzy Point;  ( , )kq fuzzy 

generalized bi   Ideal. 
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INTRODUCTION 

Fuzzy algebraic structures of groups have begun in the spearheading 
paper of Rosenfeld [1] in 1971. He studied the concept of fuzzy 
subgroups and showed that numerous outcomes in groups can be 

extended and study in an elementary manner to develop the theory of 
fuzzy subgroups after a pioneered work on fuzzy set theory by Zadeh 
[2] in 1965. Thereafter, many researchers worked on the fuzzification 
of various algebraic structures. Sen [3] were the first to introduce the 
concept of a   semigroup which is a generalization of both 
semigroup and ternary semigroup. Furthermore, Kwon and Lee [4], 

further studied po-  semigroup and introduced the concept of 
weakly prime ideals and provided useful characterizations of weakly 
prime ideals. The concepts of fuzzy ideals, fuzzy bi-ideals and fuzzy 
quasi ideals in Γ-semigroups are discussed in [5, 6]. Furthermore, 
Khan et al. [7] introduced the concept of generalized bi 

  ideals of 

type ( , )  in ordered semigroups. Furthermore, the fuzzification of 

  structures by Dutta and Chanda can refer to [8, 9] they obtained a 

one to one correspondence between the set of all fuzzy prime ideals of 
the operator rings of the   ring and the set of all fuzzy prime ideals 
of a   ring. Jun and Lee [10] introduced the notion of fuzzy ideal in 
  ring. The idea of fuzzy ideals of rings were introduced by Liu 

[11] and they also prove some fundamental properties of fuzzy ideals. 
Later Jun et al. [12] introduce the notion of fuzzy left (resp. right) 
ideals of   near-rings, and studied their properties in that regards. 

The importance of the ideas of “belongs to” ( ) and “quasi 

coincident with” ( )q relations between a fuzzy set and fuzzy point 

[13] is one of the evident from the research conducted during the past 
two decades. Jun [14], further generalized the concept of quasi 
coincident with relations between a fuzzy set and fuzzy point 

( )t kx q A

and defined ,t kx q A if ( ) ,A x t k   1 where [ , ).k 0 1
In this 

paper, we studied and provided the extension of the generalized form 
of fuzzy bi   ideals in ordered   semigroups and introduced the 
concept of ( , )kq  fuzzy generalized bi   ideals in ordered 

 

semigroups. 

PRELIMINARIES 

Some fundamental concepts and previous results are provided in 
this section that will be used throughout this paper and 

AA  is 

used for fuzzy set throughout this paper. 

Given two nonempty sets G and . Then the set G

is called a 

  semigroup if G satisfies the condition    a b c a b c   

, ,a b c G  and , .   Similarly, a nonempty subset S

of a  

semigroup G is called a sub   semigroup of G if 

a b S 

, ,a b c S  and . Given any nonempty subsets A

and B of 
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,G  : ,     A B a b a A with b B and      [3, 15]. Since the 

invention of the definitions of   semigroups then many researches 
are carried out in this direction of generalizations. 

Example 2.1 

Let   {     } and defined   { } with a mapping defined by 

        with an operation defined in the cayley table 1: 

Table 1 

        

        

        

        

Then   is a   semigroup. 

Definition 2.2 [7] 

If G and  are non-empty sets, then a structure ( , , )G  
is called 

an ordered  -semigroup if: 

(b1) ( ) ( )a b c a b c    for all , ,a b c G and , ,  

(b2)   and  a b a x b x x a x b       for all , ,a b x G

and 

, .  

Definition 2.3 [7] 

A non-empty subset A of G is called a generalized bi  -ideal of 

G if the following conditions hold for all ,a b G : 

(b3) ,a b A a A   

(b4) .A G A A  

Definition 2.4 [7] 

The set defined on X represented by   , ( ) , where AA x x x X 

is called a fuzzy subset A of .X

Definition 2.5 [7] 

Given a fuzzy subset A of G then A is called a fuzzy generalized bi 

 -ideal of G if the following conditions are satisfied, for all 

, ,x y z G and ,   : 

(b5) ( ) ( ),A Ax y x y   

(b6)  ( ) min ( ), ( ) .A A Ax y z x z    

Definition 2.6 [7] 

Given A a fuzzy subset and let ( , ]t 0 1 . Then the crisp set 

 ( ; ) : : ( )AU A t x G x t   is called a level subset of A . 

Let t be a fixed point of the interval ( , ]0 1 and x be a fixed element 

of G . Then a fuzzy subset A of G is called a fuzzy point with 

support x and value t and is denoted by tx if:  

, if
( )

, if otherwise.
A

t y x
y


 
0

We say that a fuzzy point tx belongs to a fuzzy subset of A if 

( )A x t  and is denoted by tx A . On the other hand, if [ , )k 0 1

and ( ) ,A x t k   1 then tx is quasi coincident with A and is 

denoted by t kx q A . If tx A or t kx q A , then we write t kx q A and 

if tx A and t kx q A , then we write t kx q A . 

Let I be a non-empty subset of ,G then the characteristic function 

I of I is a fuzzy subset of G and is defined by: 

, if
( )

, if .
I

x I
x

x I



 



1

0

MAIN RESULTS 

In this part, our main result is presented, and we introduce an 
extension of fuzzy generalized bi   ideals in ordered  

semigroup. Throughout this section, G will represent an ordered 

  semigroup and [0,1).k

Definition 3.1 

Let A be a fuzzy subset of G . If A satisfies the following two 

conditions, then A is called ( , )kq  fuzzy generalized bi  -ideal 

of G : 

(c1) t ty A x A   for all ,x y G such that x y and ( , ]t 0 1 , 

(c2) min{ , }, ( )t t t t kx A z A x y z q A    
1 2 1 2

for all ,x y G , 

,   and , ( , ]t t 1 2 0 1 . 

The sufficient conditions for any generalized bi  -ideal of G of 

the type ( , )kq are provided in the theorem given below. 

Theorem 3.2 

A fuzzy subset A of G is called ( , )kq -generalized bi   ideal 

of G if and only if the following conditions hold for all , ,a b c G

and ,   . 

(1) ( ) min ( ), ,A A

k
a b a b 

 
    

 

1

2

(2) ( ) min ( ), ( ), .A A A

k
a b c a c    

 
  

 

1

2

Proof: Let A be a ( , )kq  generalized bi   ideal of G and let 

there exist ,a b G such that a b and ( ) min ( ),A A

k
a b 

 
  

 

1

2

.  

Then ( )A a t  and ( ) min ( ),A A

k
a b 

 
  

 

1

2
for some 

( , ]
k

t



1

0
2

. It follows that tb A but ta A . And 
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( )A

k k
a t t t k

 
      

1 1
1

2 2
that is ( )A a t k   1 and 

hence t ka q A , a contradiction with (c1).  

Hence ( ) min ( ),A A

k
a b 

 
  

 

1

2
for all ,a b G with a b . For 

the second case, let ( ) min ( ), ( ),A A A

k
a b c a c    

 
  

 

1

2
for some 

, ,a b c G . Then there exist ,
k

t
 

 
 

1
0

2
such that 

( ) min ( ), ( ), .A A A

k
a b c t a c    

 
   

 

1

2
It Follows that 

,t ta A c A  but 
______

( )t ka b c q A   and hence again a 

contradiction with (c2). Thus ( ) min ( ), ( ),A A A

k
a b c a c    

 
  

 

1

2

for all , ,a b c G and ,   . 

Conversely, consider (1) and (2) hold for a fuzzy subset A of G

. Let 

,a b G such that .a b If ,tb A then .t ka q A Indeed: Since 

tb A so ( )A b t  and by (1) 

( ) min ( ),

min ,

, if

, if .

A A

k
a b

k
t

k
t t

k k
t

 
 

  
 

 
  

 




 
  



1

2

1

2

1

2

1 1

2 2

In which it follows that ( ) ,A a t  alternatively  

( ) ,A

k k
a t k

 
    

1 1
1

2 2
i.e. ( ) .A a t k   1 Hence (c1) 

holds. 

For (c2) let us consider (2) holds and , ,a b c G such that 

,t ta A c A 
1 2

, then by (2) 

( ) min ( ), ( ),

min ,

min{ , }, if min{ , }

, if min{ , } .

A A A

k
a b c a c

k
t t

k
t t t t

k k
t t

    
 

  
 

 
  

 




 
  



1 2

1 2 1 2

1 2

1

2

1

2

1

2

1 1

2 2

It follows that 

min{ , }( ) t ta b c A  
1 2

or min{ , }( ) t t ka b c q A 
1 2

that is 

min{ , }( ) .t t ka b c q A  
1 2

Hence A is ( , )kq  fuzzy generalized 

bi   ideal of .G             

Example 3.3 

Let  , , ,G a b c d with    and defined an ordered relation 

" " on G as given in the cayley table 2. 

Table 2 

          

          

          

          

          

            : , , , , , , , , , , , .a a b b b c c c d d a b

Then, the ordered set ( , , )G   is an ordered   semigroup. 

Likewise, the sets  ,a  , ,a b  ,a c  , ,a d  , , ,a d c  , ,a c d and 

 , , ,a b c d are generalized   ideals of .G

Define a fuzzy subset  : ,G  0 1 as: 

 

. ,     ,

. ,     ,

. ,     ,

. ,     ,

if x b

if x c
x

if x d

if x a







 


 

0 2

0 3

0 6

0 7

and    
 

 

,           . ,

, ,     . . ,

, , ,  . . ,

,           . .

G if t

a d if t
x

a c d if t

if t



 


 
 

 
  

0 0 2

0 3 0 6

0 2 0 3

0 7 1

Then  is ( , )kq  fuzzy generalized bi   ideal of G for all 

,
k

t
 

 
 

1
0

2
and . .k  0 6

The link between the generalized bi   ideal and the new introduced 

generalization of bi   ideal is given in the following theorem. 

Proposition 3.4 

If A is a nonzero fuzzy generalized bi   ideal of G of the form 

( , ),kq then the set   0 0 |a a G    is also a generalized 

bi of G ideal of .G

Proof: Suppose Let A is a generalized bi  -ideal of G of the form 

( , )kq and let ,a b G with a b such .b  0 Then, 

 A b  0 from the hypothesis. Thus, 

( ) min ( ), .A A

k
a b 

 
  

 

1
0

2
Therefore,  A a  0 thus .a  0
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Similarly, suppose ,a c  0 with , ,    A a  0 and 

  .A c  0 Now,  ( ) min ( ), ( ), .A A A

k
a b c a c    

 
  

 

1
0

2

Hence, a b c   0 which shows that A is a generalized bi   ideal 

of .G                     

Theorem 3.5 

Let I G   and I be a characteristic function of .I Then the 

following two statements are equivalent: 

(1) I is an generalized bi   ideal of ,G

(2) I is a ( , )kq  fuzzy generalized bi   ideal of .G

Proof: ( ) ( )1 2 . Let ,a b G such that a b I  . Then we have 

a I (by (b3)) ( ) min ( ),I I

k k
a b 

  
    

 

1 1
1

2 2
. Let , ,a b c G

and ,   . If ,a c I , then by (b4) a b c I   . Therefore, 

( ) min{ ( ), ( ), }I I I

k k
a b c a c    

 
  

1 1
1

2 2
. On the other hand, 

if either a I or c I , then we have the following two cases: 

(i) If ,a b c I   then ( )I a b c    1 0

( ) min{ ( ), ( ), },I I I

k
a b c a c    




1

2

(ii) If a b c I   , then ( )I a b c    0 min{ ( ), ( ), }.I I

k
a c 




1

2

Hence, I is a ( , )kq  fuzzy generalized bi  -ideal of G . 

( ) ( )2 1 . Let ,a b G such that a b I  . Then ( )I b 1 and by 

Theorem 3.1 (1) 

( ) min ( ),I I

k
a b 

 
  

 

1

2
, 

min , .
k k  

   
 

1 1
1 0
2 2

it follows that a I . 

Let , ,a b c G and ,   . If ,a c I , then ( ) ( )I Ia c  1 and 

by Theorem 3.3 (2) 

1 1 1
( ) min ( ), ( ), min 1,1, 0,

2 2 2
I I I

k k k
a b c a c    

     
      

   

this implies a b c I   . Hence, I is a generalized bi   ideal of .G

The equivalent statement on any fuzzy subset in relation to 

generalized bi   ideal and level subset are given in the following 
theorem. 

Theorem 3.6 

The following two statements are equivalent for any fuzzy subset A

of G and for all 
1

(0, ] :
2

k
t




(1) The non-empty level subset ( ; )U A t is an generalized bi   ideal 

of ,G

(2) A is a ( , )kq -fuzzy generalized bi   ideal of G . 

Proof: ( ) ( )1 2 . Let ( ; )U A t  is a generalized bi  -ideal of G

for all 
1

(0, ]
2

k
t


 . Let ( ) min ( ),A A

k
a b 

 
  

 

1

2
for some 

,a b G with a b . Then there exists ( , ]
k

t



1

0
2

such that 

( ) min ( ),A A

k
a t b 

 
   

 

1

2
. It follows that ( ; )b U A t and hence 

( ; )a U A t (by (b3)), but ( )A a t  implies that ( ; )a U A t . This is 

a contradiction and hence ( ) min ( ),A A

k
x y 

 
  

 

1

2
for all ,x y G

with x y . 

Next, let , ,a b c G and ,   such that 

( ) min ( ), ( ),A A A

k
a b c a c    

 
  

 

1

2
. 

Hence, ( ) min ( ), ( ),A A A

k
a b c t a c    

 
   

 

1

2
for some 

( , ]
k

t



1

0
2

. So we have ( ; )a U A t , ( ; )c U A t and 

( ; )a b c U A t   . Again a contradiction and hence we have 

( ) min ( ), ( ),A A A

k
x y z x z    

 
  

 

1

2
for all , ,x y z G . By 

Theorem 3.2 and in light of above discussion A is a ( , )kq -fuzzy 

generalized bi  -ideal of G . 

( ) ( )2 1 . Let ,a b G such that ( ; )a b U A t  . Then ( )A b t 

and by Theorem 3.2 (1) 

( ) min ( ), min , ,A A

k k
a b t t 

    
     

   

1 1

2 2

it follows that ( ; )a U A t . 

Let , ,a b c G and ,   such that , ( ; )a c U A t . Then 

( ) ,A a t  , ( )A c t  and by Theorem 3.1 (2) we have 

( ) min ( ), ( ), min , ,A A A

k k
a b c a c t t t    

    
     

   

1 1

2 2
, 

this implies ( ; )a b c U A t   . Hence, ( ; )U A t is a generalized bi  

ideal of .G             

CONCLUSION 

The algebraic structure of ordered   semigroup is considered 

important in several areas of mathematics such as, robotics, coding 
and language theory, combinatorics, automata theory and 
mathematical analysis. Being an ordered   semigroup a 
generalization of both ordered semigroup and ordered ternary 
semigroup, this study provides an extension of fuzzy generalized bi 
  ideals and introduces a new generalization of fuzzy generalized bi 

  ideals in the structure of ordered   semigroup. Further, the 
relation between this new generalization with generalized bi  
ideals using level subset is investigated. 
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