
 Yosman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 769-773

	
769

On bonded indian and uniformly parallel insertion systems and their
generative power

Ahmad Firdaus Yosmana,*, Markus Holzerb, Bianca Trutheb, Wan Heng Fonga, Sherzod Turaevc

a Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
b Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

c Department of Computer Science, Kulliyyah of Information & Communication Technology, International Islamic University Malaysia, 53100 Jalan
Gombak, Selangor, Malaysia

* Corresponding author: firdausyosman@yahoo.com

Article history
Received 21 September 2017
Accepted 22 October 2017

Graphical abstract

Abstract

Insertion is an operation in formal language theory that generalizes the operation of concatenation of
words, where its variants allow the operation in different ways. Parallel insertion is a variant of
insertion that simultaneously adds words between all letters of a word and also at the right and left
extremities. In previous research, restrictions on the applicability have been imposed leading to so-
called bonded insertion systems with a sequential and a parallel variant. Motivated by the atomic
behavior of chemical compounds in the process of chemical bonding, the generative power of
bonded insertion systems has been investigated where a language hierarchy was obtained. In this
paper, we introduce new variants of bonded parallel insertion systems, namely bonded Indian
parallel insertion systems and bonded uniformly parallel insertion systems. We present some results
regarding the generative power of these new systems and a language hierarchy.

Keywords: Bonded parallel insertion systems, bonded Indian parallel insertion systems, bonded
uniformly parallel insertion systems, formal languages, generative power

© 2017 Penerbit UTM Press. All rights reserved

INTRODUCTION

A formal language is a set of finite strings of symbols from a
finite alphabet. The language theoretical operations which contribute
to the forming of a sentence consist of concatenation, quotient and
Kleene closure [1].

In [1], Kari introduced a generalization of the concatenation and
quotient operations, namely the insertion and deletion operations,
respectively. The study of insertion and deletion operations has been
conducted extensively ever since its introduction as seen in [2-12].

Concatenating a word v to a word u yields one word, namely
uv ; whereas inserting a word v into a word u may take place at an
arbitrary position in the word u , resulting in a finite set of words. The
operation of inserting one word into another word at a time is called
sequential insertion. Inserting words into all possible positions at a
time, which includes between all the letters in a word and to its right
and left extremities, is called parallel insertion.

The atomic behaviour of chemical compounds in the process of
chemical bonding motivated the work in [13], where the concepts of
bonded sequential insertion systems (bSINS-systems) and bonded
parallel insertion systems (bPINS-systems) were introduced. These
bonded insertion systems describe operations of insertion on bonded
alphabets, which is explained in detail in Section 2.

The results from [13] show that the relation

L REG()⊂ L(bSINS)⊂ L(bPINS)⊂ L(E0L)

holds. In this case,

L REG() , L(bSINS) , L(bPINS) , and L(E0L)

refer to the families of regular languages, of languages generated by

bSINS-systems, of languages generated by bPINS-systems, and of
languages generated by extended interactionless Lindenmayer
systems, respectively (see, e.g., [13,14]).

In this paper, we explore the bPINS-systems further. By
implementing some restrictions on the insertion rules, we introduce
the concept of bonded Indian parallel insertion systems and bonded
uniformly parallel insertion systems.

PRELIMINARIES

We assume that the reader is familiar with the basic concepts of

formal language theory (see, e.g., [15]). Here, we only recall some
notations used in the paper.

The cardinality of a set S is denoted by S ; the inclusion of a set

A in a set B is denoted by A⊆ B and the proper inclusion by
A B⊂ .

A set of symbols is called an alphabet, denoted by Σ . The set ∗Σ
of strings is obtained from the operations on symbols from Σ . A

language L over an alphabet Σ is a subset of ∗Σ .
We denote the empty word by λ . For a word w , the length is

denoted by w .

We recall here the definition of a bonding alphabet used in [13].
Let ! be the set of integers, as well as

!0
− = 0,−1,−2,…{ } and !0

+ = 0,1,2,…{ } .

L(EDTOL)	

L(upINS)	

L(ipINS)	

L(FIN)	

RESEARCH	ARTICLE	

 Yosman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 769-773

	
770

Observe that

!0
+ =" .

Let Σ be an alphabet. Then the set

BΣ =!0

+ × Σ×!0
− is a

bonding alphabet over Σ . An element

i, a,− j() of BΣ is called a
letter a with left bond i and right bond j− . To simplify the

presentation, we write i ja−⎡ ⎤
⎣ ⎦ instead of

i, a,− j() for a letter from

BΣ . Let

w= i0

a1i1
⎡
⎣⎢

⎤
⎦⎥ i2

a2i3
⎡
⎣⎢

⎤
⎦⎥ i4

a3i5
⎡
⎣⎢

⎤
⎦⎥
! i2n−2

ani2n−1

⎡
⎣⎢

⎤
⎦⎥

be a non-empty sequence of letters from BΣ . The sequence w is
called a bond word and is said to be well-formed if all bonds fit, i.e.,

2 1 2 0j ji i− + = , for 1 1j n≤ ≤ − . If additionally, 0 2 1 0ni i −+ = holds,

then w is said to be a balanced word or, for short, a word. In case

0 2 1 0ni i −+ ≠ , then the word is said to be unbalanced. Moreover, a

word is neutral if 0 2 1 0ni i −= = . For a well-formed word

w= i0

a1−i1
⎡
⎣⎢

⎤
⎦⎥ i1

a2−i2
⎡
⎣⎢

⎤
⎦⎥ i2

a3−i3
⎡
⎣⎢

⎤
⎦⎥
! in−1

an−in
⎡
⎣⎢

⎤
⎦⎥

,

we say that the word w has the left bond 0i and the right bond

ni− as the outer bonds and
i1,…, in−1 as inner bonds. If we are not

interested in the inner bonds, we shortly write w as

 i0
a1a2a3!an−in

⎡
⎣⎢

⎤
⎦⎥

.

The set of all well-formed words built from letters of BΣ

including the empty word is referred to as

BΣ
∗ and the set of all

balanced words built from letters of BΣ including the empty word is

referred to as

BΣ
! . By definition

BΣ
!⊂ BΣ

∗ . The empty word is the

neutral element of both structures B∗Σ and

BΣ
! . For the empty word,

we write
 i0

λi0
⎡
⎣⎢

⎤
⎦⎥

 for some number

i0 ∈!0

+ . The empty word is

always a balanced word.

The length of a bond word w from B∗Σ or

BΣ
! is denoted by w

and is equal to the number of letters in w . In particular, the empty
bond word i iλ⎡ ⎤⎣ ⎦ is of length 0 .

According to [13], let Σ be a finite alphabet,

A⊆ BΣ

! be a finite

set of axioms which contains only neutral words, and

I ⊆ BΣ

! be a
finite set of insertion strings. A bonded parallel insertion system
(bPINS-system) is a triple

γ = Σ, A, I() , where the derivation relation

⇒γ is defined as follows: let

α ,β ∈BΣ

! . Then γα β⇒ if and only

if

α =α1α2!αn

for letters

α i ∈BΣ with 1≤ i ≤ n

and there are insertion strings i Iα′∈

for 1 1i n≤ ≤ + such that

β = ′α1α1 ′α2α2! ′αn−1αn−1 ′αnαn ′αn+1 .

Since

β ∈BΣ

! , the insertion of the strings iα′ is balance
preserving.

The reflexive and transitive closure of γ⇒ is denoted by γ
∗⇒ . If

there is no risk of ambiguity, we write ⇒ and ∗⇒ instead of γ⇒

and γ
∗⇒ , respectively.

A homomorphism

hbe : BΣ

!→ Σ∗
is defined by

hbe i a− j

⎡
⎣

⎤
⎦() = a

for every
 i a− j
⎡
⎣

⎤
⎦∈BΣ and is called the bond erasing

homomorphism. The language generated by a bPINS-system

γ = Σ, A, I() is defined as

L γ() = hbe β() | there is an axiom α ∈A such that α ⇒γ

∗ β{ }.

The family of all such languages is denoted by L(bSINS) .
We now give the definition of an extended deterministically

tabled interactionless Lindenmayer system (EDT0L-system) because
there are some similarities in the derivation process of such
Lindenmayer systems and bonded uniformly parallel insertion
systems. For further information on Lindenmayer systems, we refer to
[14].

An EDT0L-system is a 4-tuple

Γ = Σ, H ,ω ,Δ()

,
where Σ is a

finite alphabet, H is a finite set of homomorphisms on the set ∗Σ
(which are called tables), ω ∗∈Σ is called the axiom, and Δ ⊆ Σ .

Instead of ()w h a∈ for h H∈ and a∈Σ , we write a w→ . A word

u ∗∈Σ is derived to a word v ∗∈Σ , written as u vΓ⇒ , if and only if

there is a homomorphism h H∈ such that ()v h u= .

The reflexive and transitive closure of Γ⇒ is denoted by ∗
Γ⇒ . If

there is no risk of ambiguity, we write ⇒ and ∗⇒ instead of Γ⇒

and ∗
Γ⇒ , respectively.

The language generated by Γ is defined as

L Γ() = x∈Δ∗ |ω ⇒Γ

∗ x{ }

The family of all languages generated by an EDT0L-system is

denoted by L(EDT0L) .
The methodology of this paper consists of utilizing all of the

aforementioned definitions to produce and prove new definitions and
theorems as shown in the next section.

RESULTS AND DISCUSSION

In a derivation step of a bonded parallel insertion system, at every
position in a word, an insertion string is inserted if the system contains
a suitable insertion string for the respective bonds. For different
positions with the same bonds, different insertion strings may be
chosen. We introduce here two variants of such a system in which the
insertion is more restrictive.

In one other variant, the so-called bonded Indian parallel
insertion systems, only one bond and a suitable insertion string is
chosen for insertion in a derivation step. At all positions of other
bonds, no insertion takes place in this derivation step. The name is
chosen due to the similarity to Indian parallel grammars [14], where
every occurrence of a non-terminal in a sentential form is replaced
according to the same rule in a single derivation step.

 Yosman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 769-773

	
771

In another variant, the so-called bonded uniformly parallel
insertion systems, only one insertion string is chosen for each bond in
a single derivation step and these insertion strings are inserted
everywhere where they fit. In another derivation step, a different
string can be chosen for inserting at every position of the same bond.
In this way, it is not possible to insert different strings at different
positions of the same bond in the same derivation step.

We now formally define the two variants. The systems themselves
do not differ; the difference is in the derivation process.

Let Σ be a finite alphabet,

A⊆ BΣ

! be a finite set of axioms that

contains only neutral words, and

I ⊆ BΣ

! be a finite set of insertion
strings. A bonded Indian parallel insertion system (ipINS-system) and
a bonded uniformly parallel insertion system (upINS-system) are
triples

γ = Σ, A, I() , where the derivation relation γ⇒ of an ipINS-

system

γ = Σ, A, I() is defined as follows: let α ∈A and

β ∈BΣ

! .

Then we write γα β⇒ if and only if there is a number 1n ≥ , an

insertion word Iδ ∈ with a left bond iδ , and a set S of non-empty

bond words
 i0

a1−iδ
⎡
⎣⎢

⎤
⎦⎥ , iδ

a2−iδ
⎡
⎣⎢

⎤
⎦⎥ ,!, iδ

αn−1−iδ
⎡
⎣⎢

⎤
⎦⎥ , iδ

αn−in
⎡
⎣⎢

⎤
⎦⎥ of the set

B∗Σ such that

•

α = i0

a1−iδ
⎡
⎣⎢

⎤
⎦⎥ iδ

a2−iδ
⎡
⎣⎢

⎤
⎦⎥
! iδ

αn−1−iδ
⎡
⎣⎢

⎤
⎦⎥ iδ

αn−in
⎡
⎣⎢

⎤
⎦⎥

,

•

β = ′δ i0

a1−iδ
⎡
⎣⎢

⎤
⎦⎥
δ iδ

a2−iδ
⎡
⎣⎢

⎤
⎦⎥
δ!δ iδ

αn−1−iδ
⎡
⎣⎢

⎤
⎦⎥
δ iδ

αn−in
⎡
⎣⎢

⎤
⎦⎥

′′δ ,

where δ ′ is equal to δ if 0i iδ= and
0 0i iλ−⎡ ⎤

⎢ ⎥⎣ ⎦
 otherwise; as

well as δ ′′ is equal to δ if ni iδ= and
n ni iλ−⎡ ⎤

⎢ ⎥⎣ ⎦
 otherwise, and

• the string δ cannot be inserted somewhere else in the word α

(every bond word from the set S does not have iδ as an inner
bond).

Meanwhile, the derivation relation γ⇒ of a upINS-system

γ = Σ, A, I() is defined as follows: let α ∈A and

β ∈BΣ

! . Then we

write γα β⇒ if and only if

α =α1α2!αn for a number 1n ≥ and

non-empty subwords

α i ∈BΣ

∗ with 1 i n≤ ≤ and there are balanced

words

δ i ∈BΣ

! for 0 i n≤ ≤ such that

•

β =δ0α1δ1α2!δn−2αn−1δn−1αnδn and i Iδ ∈ for1 1i n≤ ≤ − .

0 Iδ ∈ if there is an insertion word in I which fits to the left

bond of 1α . Otherwise,
0 00 i iδ λ−⎡ ⎤= ⎢ ⎥⎣ ⎦

. n Iδ ∈ if there is an

insertion word in I which fits to the right bond of nα .

Otherwise,
n nn i iδ λ−⎡ ⎤= ⎢ ⎥⎣ ⎦

,

• whenever

δ jα i!α j−1δ i

1≤ i < j ≤ n+1() is also well-formed,

then i jδ δ= , and

• there is no insertion string which can be inserted inside some
word iα with 1 i n≤ ≤ (for any decomposition i i iu vα = with

1 i n≤ ≤ and insertion string ζ ∈I , the bond word i iu vζ is not

well-formed).

The reflexive and transitive closure of γ⇒ for both variants is

denoted by γ
∗⇒ . If there is no risk of ambiguity, we write ⇒ and

∗⇒ instead of γ⇒ and γ
∗⇒ , respectively.

The language generated by an ipINS-system or a upINS-system

γ = Σ, A, I() is defined as

L γ() = hbe β() | there is an axiom α ∈A such that α ⇒γ

∗ β{ }.

The family of all languages generated by an ipINS-system is
denoted by L(ipINS) ; the family of all languages generated by a
upINS-system is denoted by L(upINS) .

In order to clarify our notation, we give examples for the new
variants.

Example 1

Let

γ 1 = a{ }, A, I() be an ipINS-system with

A = 0 a0⎡⎣ ⎤⎦ , 0 a−1⎡⎣ ⎤⎦ 1a0⎡⎣ ⎤⎦{ } and

I = 1a−2⎡⎣ ⎤⎦ 2 a−1⎡⎣ ⎤⎦{ } .

Since the system contains only one insertion string, this system
generates the same language no matter whether it is considered as an
ipINS-system (where only one insertion string is inserted at every
possible position in a derivation step), a upINS-system (where, for
every different bond, only one insertion string is inserted at every
possible position in a derivation step), or a bPINS-system (where at
every position some suitable insertion string is inserted in a derivation

step). As shown in [13], the language

a2n |n≥ 0{ } is generated by

the system 1γ .

Example 2
Let

γ 2 = a,b{ }, A, I() be a upINS-system with

{ }0 3 3 0 0 1 1 3 3 2 2 0,A a b a a b b− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ and

{ }1 3 3 1 2 3 3 2,I a a b b− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .

The words of the set A yield the words ab and aabb . The word

0 1 1 3 3 2 2 0a a b b− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ has two positions where insertions can be

applied; at every such position, only one insertion string fits. After
inserting, the word aaaabbbb is obtained which has four insertion
positions, two of each bond for which an insertion string exists. Inside
the insertion strings, no insertion is possible. Hence, in each

derivation step, from a word 2 2n n
a b (which has 12n− possible

insertion positions for every insertion string) for some natural number

1n ≥ , the word
1 12 2n n

a b
+ +

 is obtained which has 2n possible
insertion positions for every insertion string. Other words are not

generated. Thus, the language generated is { }2 2 0|
n n

a nb ≥ .

If the system 2γ is considered as an ipINS-system, then the word

0 1 1 3 3 2 2 0a a b b− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ would yield either the word aaaabb or

aabbbb in one derivation step. This is because either the first
insertion string is inserted at every possible position or the second one
but not both at the same time. Hence, as an ipINS-system, the system

2γ generates another language than as a upINS-system.

In the sequel, we will prove a hierarchy of language families
relating the families of the languages generated by ipINS-system and
upINS-system to the family of finite languages and the family of the
languages generated by extended deterministically tabled
interactionless Lindenmayer systems (EDT0L-systems).

 Yosman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 769-773

	
772

Theorem 1
The proper inclusion

L FIN()⊂ L ipINS() holds.

Proof.
Any finite language can be generated by an ipINS-system by

taking all its words as axioms with bonds zero and giving no
insertions words. A witness for the properness is the infinite language

{ }2 0|
n

a n≥ which is generated by 1γ from Example 1.

□

Bonded Indian parallel insertion systems form a specialization of

bonded uniformly parallel insertion systems, as we will show in the
next theorem.

Theorem 2

The proper inclusion

L ipINS()⊂ L upINS() holds.

Proof.
An ipINS-system γ can be simulated by a upINS-system Γ

which is obtained by extending γ with empty insertion strings. Then
any derivation in γ can be simulated in Γ by using the same
insertion string and empty insertion strings for all other bonds. Every
derivation in Γ can be simulated in γ by sequentially inserting the
insertion strings for different bonds.

A witness for the properness is the language { }2 2 0|
n n

L a b n= ≥

which is generated by the upINS-system 2γ from Example 2 but not

by an ipINS-system since such a system would increase the number of
occurrences of either a or b but not both in one step.

□

As the last result in our paper, we show the following relation to

EDT0L-systems.

Theorem 3
The proper inclusion

L upINS()⊂ L EDT0L() holds.

Proof.
The idea for the simulation of a upINS-system

γ = Σ, A, I() by an

EDT0L-system is as follows. We represent a well-formed word of the

set B∗Σ by a sequence of symbols, where each position where an
insertion word can be inserted is represented by a non-terminal
symbol, and each letter of Σ is represented by itself and is considered
as a terminal symbol. The tables of the constructed EDT0L-system
ensure that at every insertion position of the same bond, the same
insertion string is inserted (the non-terminal representing the insertion
position is replaced by a word representing the insertion string). Also,
there is a table which eliminates all the non-terminal symbols at once
(which simulates the bond erasing homomorphism

hbe).
Let

B = ℓ | there are ℓar⎡⎣ ⎤⎦ ∈BΣ and u,v ∈BΣ

∗ ,with u ℓar⎡⎣ ⎤⎦v ∈A∪ I{ }.

We now separate the insertion strings according to the positions where
they can be inserted: for each b B∈ , let bI be the set of all insertion

strings which have b as their left bonds:

{ }|b b b b bI w w I− −⎡ ⎤ ⎡ ⎤= ∈⎣ ⎦ ⎣ ⎦

Only those bonds, for which an insertion string exists, need to be

considered:
BI = b | Ib ≠ ∅{ } . These and only these bonds are called

expandable.

Let

b1,b2 ,…,b|BI |

 be the elements of the set IB with

1 2 | |IB
b b b< < <L . Furthermore, let

T = Ib1

× Ib2
×!× Ib|BI |

.

We now construct an EDT0L-system

Γ = N ∪Σ, H , S ,Σ() which

simulates the derivation of the upINS-system γ . The set N of new
symbols is defined as

N = S{ }∪ Xb | b∈BI{ } .

Let
 f : BΣ

!→ # N ∪Σ$∗
be a mapping which transforms a bond word into its representation for
the EDT0L-system: every expandable bond Ib B∈ is represented by

bX , the other bonds are omitted, and the basic letters are kept as they
are.

We now define the tables of the EDT0L-system.
For every axiom w A∈ , we create a start table

hS ,w = S → f w(){ }∪ Xb → Xb | b∈BI{ }∪ a→ a | a ∈Σ{ } .

For every tuple

wb1
, wb2

,…, wb|BI |

⎛
⎝⎜

⎞
⎠⎟ ∈T , we create a table

h(wb1

,…,wb|BI |
) = S → S{ }∪ Xbi

→ f wbi() |1≤ i ≤ BI{ }∪ a→ a | a ∈Σ{ }.

For eliminating the non-terminal symbols, we create the table

hλ = S → S{ }∪ Xb →λ | b∈BI{ }∪ a→ a | a ∈Σ{ } .

Finally, we set

H = hS ,w | w∈A{ }∪ h
wb1

,wb2
,…,wbBI

⎛
⎝⎜

⎞
⎠⎟

| wb1
, wb2

,…, wbBI

⎛
⎝⎜

⎞
⎠⎟
∈T

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
∪ hλ{ }.

This completes the description of the EDT0L-system Γ .
From the construction, it is not hard to see that any uniformly

parallel insertion of words from I into the current bond word can be
simulated by an application of an appropriate table of rules described
above at the correct corresponding positions within the sentential form
derived by the EDT0L-system. The details of the proof showing that

L Γ() = L γ() are left to the reader. Thus,

L upINS()⊆ L EDT0L() .

A witness for the properness is the language

L = a2n

bn−1c | n ≥1{ }, which is generated by the deterministically

interactionless Lindenmayer system (D0L-system) G , defined as

G = a,b,c{ }, a→ aa,b→ b,c→ bc{ }, aac() .

In [13], it was shown that the language L cannot be generated by

a bPINS-system, where the argumentation did not use the possibility
of a bPINS-system to use different insertion strings for different
positions of the same bond. Hence, the same argumentation shows
that also no upINS-system can generate the language L .

□

 Yosman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 769-773

	
773

CONCLUSION

In this paper, two new variants of bonded parallel insertion
systems have been introduced, namely bonded Indian parallel
insertion systems and bonded uniformly parallel insertion systems.
The hierarchy of language families relating the families of the
languages generated by ipINS-system and upINS-system to the family
of finite languages and the family of the languages generated by
extended deterministically tabled interactionless Lindenmayer
systems (EDT0L-systems) is illustrated in Fig. 1. An arrow from an
entry X to an entry Y represents the proper inclusion X Y⊂ . The
labels on the edges refer to the theorem where the respective inclusion
is proven.

The results are not only of interest for research in theoretical
computer science, but also have practical application in the
advancement of research in biochemistry and DNA computing due to
the more accurate modeling of DNA recombination by considering
real-world atomic behavior of chemical bonding.

Fig. 1 Hierarchy of language families.

ACKNOWLEDGEMENT

The first author would like to thank the Ministry of Higher
Education Malaysia (MOHE) for his MyBrainSC scholarship. The
fourth author would like to acknowledge MOHE and Research
Management Centre (RMC) of Universiti Teknologi Malaysia (UTM)
for the financial funding through Research University Grant Vote No.
13H18. The fifth author would like to thank the International Islamic
University Malaysia for his financial funding of Research Initiative
Grant Scheme RIGS16-368-0532. The results presented in this paper
were obtained during the first author's research attachment at the
University of Giessen.	

REFERENCES

Kari, L. 1991. On insertion and deletion in formal languages. Ph.D. thesis.

University of Turku.
Cui, B., Kari, L., Seki, S. 2011. Block insertion and deletion on trajectories.

Theoretical Computer Science. 412, 714-728.
Daley, M., Kari, L., Gloor, G., and Siromoney, R. 1999, ‘Circular contextual

insertions/deletions with applications to biomolecular computation’ in
Proceedings of International Symposium on String Processing and
Information Retrieval (SPIRE 1999), Cancun, Mexico, pp. 47-54.

Ito, M., Kari, L., and Thierrin, G. 1997. Insertion and deletion closure of
languages. Theoretical Computer Science. 183. 3-19.

Ito, M., Kari, L., and Thierrin, G. 2000. Shuffle and scattered deletion closure
of languages. Theoretical Computer Science. 245(1), 115-133.

Kari, L. 1992. Insertion and deletion of words: determinism and reversibility.
Mathematical Foundations of Computer Science. 315-327.

Kari, L. 1993. Generalized derivatives. Fundamenta Informaticae. 18(1), 61-
77.

Kari, L., Mateecu, A., Paun, G., and Salomaa, A. 1993. Deletion sets.
Fundamenta Informaticae. 19, 355-370.

Kari, L., Mateecu, A., Paun, G., and Salomaa, A. 1995. On parallel deletions
applied to a word. RAIRO – Theoretical Informatics and Applications. 29(2),
129-144.

Kari, L., Paun, G., Thierrin, G., and Yu, S. 1999, ‘At the crossroads of DNA
computing and formal languages: characterizing RE using insertion-deletion
systems’ in Proceedings of 3rd DIMACS Workshop on DNA Based
Computing, University of Pennsylvania, Pennsylvania, pp. 329-347.

Kari, L., and Thierrin, G. 1996. Contextual insertions/deletions and
computability. Information and Computation. 131(1), 47-61.

Krassovitskiy, A. 2011. Complexity and modeling power of insertion-deletion
systems. Ph.D. thesis. Universitat Rovira i Virgili.

Fong W. H., Holzer, M., Truthe, B., Turaev, S., and Yosman, A. F. 2016, ‘On
bonded sequential and parallel insertion systems’ in Eighth Workshop on
Non-Classical Models of Automata and Applications (NCMA) Proceedings,
Debrecen, Austria, pp. 163-178.

Rozenberg, G., and Salomaa, A. (1980). The Mathematical Theory of L-
systems. Cambridge, MA: Academic Press.

Rozenberg, G., and Salomaa, A. (1997). Handbook of Formal Languages.
Berlin: Springer-Verlag.

	

	

	

	

3

2

1

