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Exploration of a group's properties is vital for better understanding about the group. Amongst other

properties, the homological invariants including the nonabelian tensor square of a group can be
explicated by showing that the group is polycyclic. In this paper, the polycyclic presentations of certain
crystallographic groups with quaternion point group of order eight are shown to be consistent; which
implies that these groups are polycyclic.
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INTRODUCTION

In mathematical view, a crystallographic group is the description
on the symmetrical pattern of a crystal. It is a symmetry group which
has configuration in space. It is an extension of a free abelian group of
finite rank by a finite point group. Research on homological invariants
of a group has been increasing in number since it is related to the study
of the properties of the group using mathematical approach. It includes
the nonabelian tensor square (G®G ), the exterior square (GAG),

and the Schur multiplier (M (G)) of a group. The nonabelian tensor

square is requisite in determining the other properties of the group. The
nonabelian tensor squares of all groups up to order 30 were computed
(Brown et al., 1987). In 1999, the nonabelian tensor squares of 2-
generator 2-groups of class 2 were explicated (Kappe et al., 1999)
while, in 2008, the homological invariants of all infinite two-generator
groups of nilpotency class two were found (Mohd Ali et al., 1998).
Meanwhile, the homological invariants of the symmetric group of order
six, S, were constructed (Ramachandran et al., 2008). The nonabelian

tensor square of groups of orders 8q where q is an odd prime had been
computed (Rashid et al., 2013). Moreover, Zainal et al. focused on the
nonabelian tensor square and the Schur multiplier of some groups of
odd prime power order (Zainal et al., 2013). The crystallographic
groups with cyclic point group of order two and its nonabelian tensor
square was first explored by Masri (Masri, 2009) while later in 2014 it
has been extended on finding other homological invariants of these
groups (Mat Hassim et al., 2014). Besides, the homological invariants
of crystallographic groups with nonabelian point group, particularly
dihedral group of order eight, have been determined (Mohd Idrus et al.,
2015; Wan Mohd Fauzi et al., 2015). Furthermore, the homological
invariants of crystallographic groups with symmetric point group of
order six are found (Tan et al., 2016).

The groups being considered are taken from Crystallographic,
Algorithms and Table (CARAT) package (CARAT, 2014). By using
the technique on computing the nonabelian tensor square of polycyclic

groups (Blyth and Morse, 2009), these groups are transformed from
matrix representation to polycyclic presentation before their
homological invariants can be computed (Mohammad et al., 2016). It
is crucial to perform the consistency check for those polycyclic
presentations so that we can proceed to find the homological invariants
of the groups. Recently, the polycyclic presentations of the first
crystallographic group with quaternion extension was verified to satisfy
its consistency relations (Mohammad et al., 2015). Therefore, in this
research, the polycyclic presentations of second, third and fourth of
torsion free crystallographic groups of dimension six with quaternion
point group of order eight will be proved to be consistent.

SOME PRELIMINARIES

To find its homological invariants, we use the technique in (Blyth
and Morse, 2009). The polycyclic presentations of these
crystallographic groups are shown to be consistent. The following
definitions are used throughout this research.

Definition 1: (Eick and Nickel, 2008) Polycyclic Presentation
Let F, be a free group on generators ( g,,9d,,.....,9, ) and R be a set

of relations of a group G. The relations of a polycyclic presentation
have the form:

9" =0is"9,  foriel,
9;'0:9; = 9j4" 0,

9,9:9; =959,

forj <i,

forj<iandjel

for some I c{1,...,n},e, 0 for i< and X i YiixoZijx €0 for all i,
jand k.

Definition 2:
Presentation

(Eick and Nickel, 2008) Consistent Polycyclic
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Let G be a group generated by g,,9,,....9, ande,e ell. The

consistency of the relations in G can be determined using the following
consistency relations.

9.(9;9,) =(9.9))9, fork > j>i,
(959, =9;"(9,9) forj>i,jel,
9,(9") =(9,9)9"" forj>ijiel,
(97)9; =9:(97) foriel,

9;=(9,9/)9, forj>iiel.

RESULTS AND DISCUSSION

Based on Definition 1 and Definition 2, the second, third and fourth
polycyclic presentations for the crystallographic groups of dimension
six with quaternion point group of order eight will be explicated. All of

the groups are generated by | ,1,,15,14,15,1g but different a,b where

1000001 1 0000O00D0O0
0100000 0100001
0010000 0010000
k=0 001 00 0|,Ip=[0 00100 0|
000O01O00 00O0O0O1O00
000O0O0OT10 00O0O0O0OT10
00O0O0O0TO 01 00O0O0O0TO 071
1 0 00 0 0 0] 100000 O]
0100000 0100000
0010001 0010000
I3:0001000,I4:0001001,
000O01O00 00O0O01O00
000O0O0OT10 000O0O0OT10
00000 O0 1] 0 000O0O0 1]
1 0000 0 0] 10000 O0 O]
0100000 0100000
0010000 0010000
I5:0001000,I6:0001000.
00O0O0OT1TO01 00O0O01O00
00O0O0O0OT10 00O0O0O0T11
000000 1] 0 000O0O0 1]
and fora,b
Q(6);
M 1] _
0 -11-100 -3 1 -10 100 0
0 001000 1 1 1000 0
—1—10100% 0 1 -1100 0
a=|0 -1 0 0 00 O0b=-10-110020
0 00010 3 00 0001 3
0 00000 1] |0 0 0 000 1|
Q3(6);
_ g ] ]
0 00101 - 001 0 1 -10
001010 % 0 00-10 0 0
0_10001% -1 00 0 O O O
a=|.1 0 001 0 o[b=[0 100 -1-10
-1
0 00010 1 cooo 0 -1%
0 00001 ! 0000 -1 0 O
0000 0 0 1
[0 0 000 0 1| - -

Q4(6):
[0 0 1
0 0 O
-1 0 O

ac| 0 10
0 0 O
0 0 O
K 0

© o o o o r o
© o B OO o o
©O »r O o o o o
P sk sl O 0 00

00
00
01

_|-1 0

0
00
[0 0

O O O o o

O O O O O O

o r O O o o o
© o r OO0 o o
P ondl © o o o

Therefore, Theorem 1 until Theorem 3 are developed.

Theorem 1

Let QZ(G) be the second crystallographic group of dimension six with

quaternion point group of order eight and its polycyclic presentation is
given as in the following:

Q,(6)=(a,b,c, I, 1,1, 1,11, |
-1 1212 2
b* =bel, L1712, ¢ =1

Cb

a _1-1 b _-1-1-1 jc _ 1
12 =10, 10 = 1N 1 =1
a _ |-1y-1-1 b _ c_ -1 ja_
(R b e i L I O T
b _ -1 c
IA_Il |23‘I4

c _ a _
Ie =112 =

_ a_ 14 11
=c¢, 12 =111,

5176

2 _
a‘ =cllLl,l,,

Jot ct =cl,l, 1

b? =cl;*

5'6 1

27475 761

b _ -1 jc _ -1
Il _I3 ‘Il_ll’

—_11 12 =
=15 12 =1

b
6’|5

b _ c _
IS’ IG _IG’ IG _IG’

=1,

=1, 17" =1, forj>i, 1<i,j <6).

Then, the polycyclic presentation is consistent.

@

Proof: By Definition 1, QZ(G) is generated by a,b,c,l,,1,,1,,1,,1, and

l,. Let

g, =a 9g,=b,g;=¢,9,=k, g =1, g =1, 9, =1,, gg =1;

and g, =I,. Based on Definition 2, there are five relations that need to

be proven.

For

the

first

consistency

check,

0.(9;9;) =(9,9;)g, fork > j >i, the following relations hold:

i)

ii)
iii)
iv)
v)
vi)
vii)
viii)
iX)
X)
xi)
Xii)
xiii)
Xiv)
XV)
XVi)
Xvii)
Xviii)
Xix)
XX)
XXi)

c(ba) = (ch)a,
l1(cb) = (lic)b,
l1(ca) = (lic)a,
l1(ba) = (I1b)a,
I2(l1c) = (l2l1)c,
I2(11b) = (I211)b,
I2(l1a) = (I211)a,
I2(cb) = (l2€)b,
I2(ca) = (l=C)a,
I2(ba) = (I2b)a,
I3(I211) = (Isl2)14,
I3(12¢) = (Isl2)c,
I3(12b) = (lsl2)b,
I3(12a) = (lsl2)a,
I3(l1c) = (Isl1)c,
I3(l1b) = (Isl1)b,
I3(l1a) = (Isl1)a,
I3(cb) = (lsc)b,
I3(ca) = (lsc)a,
I3(ba) = (Isb)a,
la(1312) = (lal3)l2,
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XXii)
xxiii)
XXiv)
XXV)
XXVi)
XXVii)
XXviii)
XXiX)
XXX)
XXXi)
XXXil)
Xxxiii)
XXXiV)
XXXV)
XXXVi)
XXXVii)
XXXViii)
XXXiX)
xl)
xli)
xlii)

la(l3l1) = (lal3)l,
la(lsc) = (lals)c,
la(Isb) = (lal3)b,
la(13a) = (lals)a,
la(l2l1) = (lal2)ls,
la(l2€) = (lal2)c,
la(I2b) = (lal2)b,
la(l2a) = (lal2)a,
la(lzc) = (lal1)c,
la(12b) = (lal1)b,
la(l1a) = (lal1)a,
la(ch) = (lac)b,
la(ca) = (lac)a,
la(ba) = (lab)a,
I5(lals) = (Isl4)ls,
I5(lal2) = (Isla)l2,
I5(lal1) = (Isla)la,
Is(lac) = (Isls)c,
Is(lab) = (Isl4)b,
Is(lsa) = (Isla)a,
I5(l3l2) = (Isl3)l,
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xliii) Is(I3l1) = (Isl3)ly, Ixiv)  le(lal3) = (lsla)ls,
xliv) Is(Isc) = (Isl3)c, Ixv)  le(lal2) = (lsla)l2,

xlv) Is(Isb) = (Isl3)b, Ixvi)  le(lslz) = (lela)ls,
xlvi) Is(Iza) = (Isls)a, Ixvii)  ls(laC) = (lels)c,
xlvii) Is(I2l1) = (Isl2)ls, Ixviii) ls(lab) = (lels)b,
xlviii)  Is(l=€) = (Isl2)c, Ixix)  ls(l4a) = (lsls)a,
xlix) Is(I2b) = (Isl2)b, Ixx) ls(1312) = (lel3)l2,
1) Is(I2a) = (Isl2)a, Ixxi)  ls(lals) = (lsl3)ls,
li) Is(I1c) = (Isl1)c, Ixxii)  ls(lsc) = (lel3)c,
lii) Is(I1b) = (Isl1)b, Ixxiii)  ls(Isb) = (lel3)b,
liii) Is(I1a) = (Isly)a, Ixxiv)  ls(Isa) = (lsls)a,
liv) Is(cb) = (Isc)b, Ixxv)  ls(l212) = (lel2)l1,
Iv) Is(ca) = (Isc)a, Ixxvi)  ls(l2c) = (lsl2)c,
Ivi) Is(ba) = (Ish)a, Ixxvii) ls(I2b) = (lel2)b,
Ivii) ls(Isla) = (lels)la4, Ixxviii) ls(l2a) = (lsl2)a,
Iviii) ls(Isl3) = (lsls)ls, Ixxix)  ls(lic) = (lsl1)c,
lix) ls(Isl2) = (lsls)l2, Ixxx)  ls(l1b) = (lel1)b,
1X) ls(Isl1) = (lsls)ly, Ixxxi) ls(lia) = (lsl1)a,
Ixi) ls(Isc) = (lsls)c, Ixxxii) ls(ch) = (lsc)b,
Ixii) ls(Isb) = (lsls)b, Ixxxiii) ls(ca) = (lsC)a,

Ixix)  ls(Isa) = (lels)a, Ixxxiv) ls(ba) = (Ish)a.

By the polycyclic presentation of as given in (1),

For i),
c(ba)=cabcl,"1,I;*1¢ = acl, I, "lbel 1,1 %1E
= acl,l,I;1,bel L1212 = acl,|,bl; el ,1;22
—_ -1 -1 -1 -2]12 -1-1-1-1 -1 -1y 1212
= aclbl"LLI-1cl L1212 = achl 1,111 ol 171
= abel L1, el 111212 = abel 2Lel 111012
= abcl, 2cl;1,1.%131, 1, = abel, el 1,113, 1,
~1y 1-3y3y-1 —1y 1-31 3] -1
= abeel L1131, = abeel, L1153,
= abc?l,L,112 = abl, ], 1712,
while,
(cb)a =hca =bacl,lI; "1, =abcl, 1,1l cl,1, I,
-1 -2]12 -1 -1.1-1 313
= abel,",¢l; 2121111, = abel el 1,11
= abcel, 112 = abe?L, 1,112 = abl LML 00e
= abl %I,
Therefore, c(ba) = (ch)a.

For ii),
I, (ca) = Lacl,lI;ly = al, L1 L1l = al'Lel, 111,
=al el L1, 1M, = acl 121,
Whereas,
-1 -1 -1 -1 211

(Le)a=cl"a=cal,l;"l, =acLl,I; 7,171, =acll;1;71;.
Hence, l1(ca) = (lic)a.
The rest of the relations iii) until Ixxxiv) can be shown in a similar
way.

Next, the relations of Q2(6) are shown to satisfy the second

consistency relation,

(97)9, =97 (9,9, forj>i,jel,
The following relations hold:
i) b?a = b(ba), i) c%b = c(ch).
ii) c?a = ¢(ca),
For i),

2 -1 1
b*a =cll;"a=clal;
= calyl;* = acl,l 1l *

_ 2|2
=acl,l,I.°l;.

Besides,
b(ba) = babcl,I;%1Z = abcl, I 212bcl, 1%
-1 21211 1212 — L1 -1 -1 1A 21 25 -4 =212
= abcl, "1, bel 117,171 =abel bl M, el 210,17

_ -1 -1~1-2121- 1212 — 2A1-1 -2121-1 1212
= abebl,I;1;; cl; 21211212 =abcl, el 12121,
_ 2 21214 1212 _ -1 14 -2121-1 1212
= ab?eel 12121, 1,1.212 = acl ) 10 12121,

_ -2)2
=acl,lI;7l;.

Therefore, b?a is shown to coincide with b(ba) and the rest of the
relations can be shown in a similar way.

Next, for the third consistency relations,
9,(97) =(g,9,)9;" for j >i,i e I, the following relations hold:

i) ba? = (ba)a, xii) 3b2=(13b)b,
i) ca® = (ca)a, xiii) 1ab?=(l4b)b,
iii) lha?=(ha)a, Xiv) Isb?=(1sb)b,
iv) l2a?=(l.a)a, XV) lsb?=(lsb)b,
)] 13a2=(lsa)a, xvi) lic?=(lic)c,
vi) lsa?=(lsa)a, xvii) l2c?=(IzC)c,
vii) lsa?=(Isa)a, xviii) Isc?=(lIsc)c,
viii) lsa?=(lsa)a, Xix) lac?=(lac)c,
ix) ch?= (cb)b, XX) Isc?>=(lsc)c,

X) lib2= (lib)b, Xxi) lec2 = (IsC)C.
xi) l2b2= (I2b)b,

For i), we want to prove that ba?=(ba)a,

By (1),
ba? =bcl | 1,I

2°3°476"
Then, we have,

=11 1212 =1 1 -4 =1 1 -4
(ba)a = abcl, "1,l;%I;a = abel, LI I I la = abel L1 5 al
-1 14 -1 -1 1-141-4 2 -1 -1-12
=abcl,"1;7; "al l, = abcl 1,1 "al "l = abcl, Lal 1,

=abcl,'l,alll;? = abel,*al, "L LIZI.;? = abcal 11 L2

= abcal,l,I’1;? = abacl,l Il L1,I2I;? = abacl,LIZL1;*

_ -1y 1-212 21 1-1 _ A2p/a] -] -2y2 2] 11
= aabel, L1 717cl 11211, = abel, el 212, LI2L

a2 1,11 21-1 _ A2 21-1
=a‘bcl, “cl, LLI,1; "1, =abcel L1,

=a’bl I L2, = a’bLLlZ =cLL],IbLLIZ

1'3°475 1374 2737476 71'3°4

_ 2 _ ~1 2 _ 212
= cLLLbILLIZ = cLLbILLLLIZ, = cl,blLIZIZ]

273137476 2'3747°6

=11 -1 -1 212
= cbl, ;1 12121, = bel 1|

12737476 2737476"

Hence, it is proven that ba?=(ba)a. For ii) until xxi), the relations are
shown to be true.
Next, the relations of Q,(6) are shown to satisfy the forth

consistency relation, (gi)g, =g;(g9;) foriel. The following
relations hold:

i) a’a =aa?, iii) c%c =cc?.
i) b%b = bb?,
By relations (1),
For i),
2 -1 -1 -1 =1 -1
a‘a=cll,l lia=clll,al, =clal, 1,1, 11l =cal LLI, 11,

= cal,l, = acl,lI. "1l =acl,llI,.
Next,

aa’ = acl, L.

The relations for ii) and iii) are shown to be true.
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Lastly, the relations of Q,(6) are shown to satisfy the fifth
consistency relation, g, =(g,9,")g; forj>i,iel. The following
relations hold:

i) l=(l2 113 Iy, ix) le=(ls 12%) 12,
ii) ls=(Is 112 s, X) la=(la 15%) 13,
i) la=(la Y 1y, xi)  ls=(Is 151 Is,
iv) |5:(|5 |1'l) I, Xll) |6:(|6 |3_1) I3,
V) le=(ls 112 11, xiii)  1s=(Is 152) s,
vi) ls=(I3 12%) I, xiv)  le=(ls l2%) la,
vii)  L=(la 1Y) Iy, xv)  le=(ls Is*) Is.
viii)  Is=(Is 121 I,

All 15 relations above are true since Iy, Iz, I3, ls, Is and ls commute with
each other. Since the presentation of Q2(6) satisfies the consistency

relations given in Definition 2, then Q2(6) has a consistent polycyclic

presentation. Using similar method, Theorem 2 and Theorem 3 can be
proven.

Theorem 2
Let Q,(6) be the third crystallographic group of dimension six with

quaternion point group of order eight and its polycyclic presentation is
given as in the following:

Q,(6)=<(a,b,c,l,,1,,1,,1,, 15,1, | a® =cl, !,
b? = cl,1;1;1.%, b® =bel, 121212,
¢ = LMt e =clt Ll
¢ =c, =11 =111 =17 12 =1, ) =17,
=12 12 =1, 12 =1, =10 12 =15 12 =1,
16 =102 = LA 12 =L, 18 =L L,

a _ 1-1-34-1 b _ 1 c _ -4
13 =10 10 =170, 18 = 1L

I =1, 17 =1, forj>i, 1<i,j <6)

@

Then, the polycyclic presentation is consistent.

Theorem 3
Let Q,(6) be the fourth crystallographic group of dimension six with

quaternion point group of order eight and its polycyclic presentation is
given as in the following:

Q,(6)=(a,b,c,L,1,,1,,1,.15,1 |a* =cl, b® =c,
b* =bc™*, ¢* =1.Y,%, ¢* =¢, ¢” =c,
1=, 1P =1, 18 =1 12 =1, 1 =17,
=15 12 =1 1 =1, 1 =1 12 =15,
1P =10 =10 12 =1, 10 =1, 18 =1, 12 =1

12 =1, 1¢ =1, 1 =1, 15 =1, forj >i, 1<i, j <6)

®)

Then, the polycyclic presentation is consistent.

CONCLUSION

In this research, the polycyclic presentations of the second, third
and fourth crystallographic group of dimension six with quaternion
point group of order eight are shown to be consistent. Therefore, the
crystallographic groups with quaternion point group of order eight are

polycyclic. These polycyclic presentations can be applied in finding the
homological invariants of the groups.
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