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Abstract 

An analytical investigation is carried out to study the unsteady free convection stream of micropolar 
fluids over an oscillating vertical plate. Wall couple stress is promised at the bounding plate with 
isothermal temperature. Problem is displayed in terms of combined partial differential equations 
together with certain physical conditions and then written in non-dimensional form. Exact solutions 
are achieved using the Laplace transform technique. Analytical results of velocity, microrotation and 
temperature are plotted in graphs and debated for different inserted parameters. Excellent validation 
of present results is acquired with existing results in literature. It is observed that, the velocity is 
smaller for micropolar fluids than for Newtonian fluids. 
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INTRODUCTION 

Rheological characteristics of non-Newtonian fluids are termed 

by their constitutive equations. Because of complex nature of non-

Newtonian fluids, several models or constitutive equations have been 

suggested based on their empirical observations. Amongst them, one 

model was proposed by (Eringen, 1966) using micromorphic fluid 

theory, known as micropolar fluids. Micropolar fluids pose 

microrotation and microinertia effect and constitute a significant 

branch of fluids. In literature micropolar fluids are used to describe 

flow characteristics of colloidal suspensions, geomor-phological 

sediments, liquid crystals, polymeric additives, haematological 

suspensions, lubricants and many other biological fluids (Ariman et 

al., 1973). Eringen and Lukaszewicz discussed fascinating 

characteristics of theory and applications of micropolor fluids (Erigen, 

2001; Lukaszewicz 1999).  

(Nazar et al., 2002) examined boundary layer flow of micropolar 

fluid past an isothermal sphere by taking the free convection. (Cheng, 

2008) discussed natural convection for micropolar fluids in combined 

transfer of heat and mass over a sphere accepting constant wall 

temperature together with constant wall concentration. (Sherief et al., 

2011) used Laplace transform method and studied unsteady flow of a 

micropolar fluid from with rapidly stimulated plate. Analysis of heat 

transfer from moving surfaces with internal heat generation in a 

micropolar fluid is carried out by (El-Hakiem, 2014 ). (Hassanien et 

al., 1997) investigated the natural convection boundary layer flow of a 

micropolar fluid. (Ishak et al., 2008) discussed the micropolar fluids 

with heat transfer over a stretching surface with variable heat flux. 

(Lok et et al., 2005) reported the steady mixed convection flow near 

the stagnation point on a vertical surface of a micropolar fluid. 

Boundary layer stagnation point flow past a moving wall of a 

micropolar fluid has been studied by (Gorla, 1983). (Damesh et al., 

2007) illustrated the micropolar fluid with unsteady natural 

convection heat transfer over a vertical surface with constant heat flux 

using numerical technique, whereas conjugate transfer of heat and 

mass in unsteady flow of a micropolar fluids with wall couple stress 

studied by (Khalid et al., 2015). 

(Abo-Dahab et al., 2013) investigated the unsteady flow of 

rotating and chemically reacting slip-flow regime with heat generation 

MHD micropolar fluid. The aim of the present work is to provide 

exact solutions for the unsteady free convection flow of an 

incompressible micropolar fluid over an infinite vertical plate 

oscillating in its own plan. More exactly, heat transfer when the 

bounding plate takes wall couple stress with isothermal temperature is 

studied.  

PROBLEM FORMULATION  

        Assume, unsteady boundary layer stream of an incompressible 

micropolar fluid in the region 0y  determine by a plane surface 

positioned at 0y  with a fixed end at 0x . It is expected that at 

the initial moment 0,t  both the plate and the fluid are at rest at the 

constant temperature T
. At time 0t  the plate begins to oscillate 

in its plane ( 0y  ) according to  
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where  H t is the unit step function, U is the amplitude of the 

motion, i is the unit vector in the vertical flow direction and  is the 

frequency of oscillation of the plate. At the same time, the plate 

temperature level are raised to 
wT   which are thereafter maintained 

constants. Assume that, the velocity, microrotation and temperature 

are functions of y and t only. Taking usual Boussinesq’s 

approximation, the unsteady flow is governed by the following set of 

partial differential equations.  
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The corresponding initial and boundary conditions are  

      

     ,0 0, ,0 0, ,0 for all 0,u y N y T y T y    (5)    

         

 

0, cos , 0, 0, ,

0, , 0,w

u
u t H t U t N t n t

y

T t T t






  



 

(6) 

     , 0, , 0, , as .u t N t T t T y      
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Here u is velocity,  is dynamic viscosity,  is density, g is 

gravitational acceleration,  is vortex viscosity,  t is time, T is 

temperature, 
T is volumetric coefficient of thermal expansion, N is 

the microrotation whose direction of rotation is in the xy -plane, j is 

microinertia per unit mass, 0 is spin gradient viscosity, pc is heat 

capacity at constant pressure, k is thermal conductivity and t is 

phase angle. The spin gradient viscosity 0 , measures the relationship 

between the coefficients of viscosity and micro-inertia, is defined as 
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To moderate the above equations (2-8) into their non-dimensional 

forms, we establish the succeeding non-dimensional quantities, 
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Employing equation (8) into equations (2-4), we achieve the following 

non-dimensional partial differential equations (* symbol is omitted for 

simplicity) 
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The consistent initial and boundary conditions take the following non-

dimensional forms: 

     ,0 0, ,0 0, ,0 0 for all 0,u y N y y y    (12)     
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are the microrotation parameter, Prandtl number, dimensionless spin 

gradient and Grashof number, respectively.   

SOLUTION OF THE PROBLEM 

Applying the Laplace transforms to equations (9-11), and using 

conditions (12-14), the following solutions in the transformed 
 ,y q

plane are obtained 
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By taking the inverse Laplace transforms of above equations, we 

obtain  
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Limiting case 
        In this case, the stream in the fluid is convinced due to 

spontaneous motion of the plate. Hence taking 0t     into 

equation (18), which correspond the spontaneous motion of the plate 

as 
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(21) 

       It is important to note that equation (21) is found identical to 

those obtained by (Chudhary et al., 2007) equation (19), in the 

absence of MHD and porosity effects. Hence, this verifies the 

correctness of the present work. This fact is also shown in Figure 7. 

RESULTS AND DISCUSSION 

      In this section, final results are computed for different physical 

parameters which are presented by mean of graphs.  Parameters of 

physical interest are microrotation parameter  , Prandtl number Pr 

and Grashof number Gr. Influence of microrotation parameter  on 

velocity and the microrotation is depicted in Fig.s 1 and 2. These 

graphs show that velocity decreases whereas microrotation increases 

with increasing . Obviously, velocity satisfies the imposed 

boundary conditions in equations (13) and (14). On the other hand, the 

microrotation  takes the negative values of the gradient of velocity at 

the plate surface and approaching to zero as one move away from the 

plate surface as shown in Fig. 2. This fact totally aggresses with 

imposed conditions on microrotation (see equations (13) and (14)). 

Fig.s 3 and 4 present plots for velocity and microrotation for different 

values of Prandtl number Pr. These graphs show that the influence of 

increasing values of Pr  result in decreasing of the velocity, magnitude 

of the microrotation and temperature as well.       

      Fig.s 5 and 6 show deviations in velocity and microrotation 

outlines for different values of Grashof number Gr. It is observed that 

an increase in Gr leads to an increase in velocity due to enhancement 

in the buoyancy force. Besides that magnitude of microrotation 

decreases for large values of Gr. For positive values of Gr correspond 

to freezing of the surface by natural convection however Gr = 0 shows 

the lack of heat transfer due to free convection. 
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Fig. 1 Velocity profiles for different values of 

  
when Pr 10, 1.5, 0.6, 5, / 4 0.6.n Gr t       &

 
  

 

 
Fig. 2 Microrotations for different  when

Pr 10, 1.5, 0.6, 5, / 4 0.6.n Gr t       &   

 

 

 

 
 

Fig. 3  Velocity    profiles     for    different    values   of   Pr   when 

0.5, 1.5, 0.6, 5, / 4 0.6.n Gr t        &  

 

 

 

 

 

 
 

Fig. 4 Microrotations for different Pr when

0.5, 1.5, 0.6, 5, / 4 0.6.n Gr t        &  

  

 

 

 
Fig. 5 Velocity profiles for different Gr when    

Pr 10, 0.5, 1.5, 0.6, / 4 0.6.n t        &  

 

 

 

 
 

Fig. 6 Microrotaions for different Gr when    

Pr 10, 0.5, 1.5, 0.6, / 4 0.6.n t        &  
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In order to check the correctness of present results, the velocity 

profiles of present result, equation (21) is compared with existing 

results in literature (Chaudhary et al., 2007). This comparison is 

shown in Fig. 7. 

Fig. 7 Comparison of micropolar fluid velocity (when 0   ), 

with results obtained by (Chaudhary et al., 2007) see Equation (19), 

when 0.2, 0t t  and 0.M  

CONCLUSION 

An analytical study is performed to study explore the unsteady free 

convection stream of micropolar fluids over an oscillating vertical 

plate with wall couple stress. Problem is demonstrated in terms of 

coupled partial differential equations together with some physical 

conditions and then written in non-dimensional form. Laplace 

transform technique is used to find the exact solutions. It is concluded 

that velocity across the boundary layer increases with increasing Pr 

whereas decreases with increasing values of  and Pr.  Magnitude of 

microrotation on the plate is decreases with increasing Gr while rises 

with increasing  and Pr. Solution (21) is found in excellent 

agreement with those obtain by (Chaudhary et al., 2007). 
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