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Abstract 

This article is proposed to investigate the impacts of heat and mass transfer in magnetohydrodynamic 
Casson fluid embedded in porous medium. The generalized solutions have been traced out for the 
temperature distribution, mass concentration and velocity profiles under the existence and non-
existence of transverse magnetic field, permeability and porosity. The corresponding solutions of 
temperature distribution and mass concentration, velocity profiles are expressed in terms of newly 
defined generalized Robotnov-Hartley function, wright function and Mittage-Leffler function 
respectively. All the corresponding solutions fulfill necessary conditions (initial, natural and boundary 
conditions) as well. Caputo Fractionalized solutions have been converted for ordinary solutions by 
substituting 𝜁 = 1. Some similar solutions for the temperature distribution, mass concentration and 
velocity profiles have been particularized form generalized solutions. Owing to the rheology of problem, 
graphical illustrations of distinct parameters are discussed in detail by depicting figures using Mathcad 
software (15).        

Keywords:  Special functions, Caputo Fractional differentiation, rheological impacts and graphical 

illustrations.  
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INTRODUCTION 

Due to abundant applications of non-Newtonian fluids in 
technological development and advancement, many engineers and 
scientists are working on distinct investigations such as cosmetics, 
pharmaceuticals, chemicals, oil, gas, food and several others. Even non-
Newtonian fluids are not easy to tackle in comparison with Newtonian 
fluids. This happens due to the non-availability of at least single 
constitutive equation that can give explanations of all characteristics in 
non-Newtonian fluids. In order to have the explanations of all 
characteristics of non-Newtonian models have been presented for 
instance, Walters-B (Khan et al., 2014), Oldroyd-B (Khan et al., 2012), 
Jeffrey (Qasim et al., 2013), Bingham plastic (Kleppe et al., 1972), 
power law (Olajuwon, 2009), Brinkman type (Zakaria et al., 2013), 
viscoplastic (Hassan et al., 2013), Maxwell (Kashif et al., 2015; Kashif 
et al., 2015, second grade (Kashif, 2016). In continuation, the most 
popular model of non-Newtonian fluid is known as casson model 
(Casson, 1959). Casson model is used in pigment oil suspensions for 
the predictions of behavior of fluid flows. This model is highly 
configured by several researchers in distinct situations of fluid flows. 
(Malik et al., 2013) have investigated vertical exponentially stretching 
cylinder for boundary layer flow of Casson fluid (Malik et al., 2013). 
Venkatesan et al. analyzed stenosed narrow arteries for blood rheology 

for Casson fluid under mathematical study (Venkatesan, 2013). Taza 
Gul et al. have perused MHD third grade fluid under assumptions of no 
slip boundary condition for vertical belt with thin flim flow (Gul et al.,

2014). In this paper they investigated analytical expression for energy 
and momentum equations by employing Adomian decomposition 
method. Sidra et al., 2014 analyzed two vertical plates for unsteady 
second grade fluid under assumptions of oscillatory boundary and 
condition of magnetic field (Abid et al., 2014). They explored the exact 
solutions for temperature distribution and velocity field from the set of 
non-linear partial differential equations. It is focused point in their 
paper that they emphasized the thermal effects on the vertical plates. 
The generalized third grade fluid for Poiseuille and Couette flows in the 
presence and absence of magnetohydrodynamics has been led by 
Rasheed and et al. (Rasheed et al., 2014). They considered the flow 
between two parallel plates and trace out the non-linear partial 
differential equation using Homotopy Perturbation Method. Kashif 
analyzed second grade fluid in porous medium for oscillations of plate 
(Muzaffar et al., 2017). In continuation, he extended the work of 
(Muzaffar et al., 2017) for fractionalized viscoelastic fluid under 
influences of magnetic field and expressed the general solutions in term 
of generalized Fox-H function (Kashif et al., 2016). Fractional 
differential equation has become a fundamental tool for the modeling 
of various physical phenomenon’s, for instance seepage flow in porous 
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media, nonlinear oscillations of earthquakes, fluid dynamic traffic 
models, electrochemistry, optimal control, electromagnetism, 
viscoelasticity and several others. The usefulness of fractional calculus 
in the differential equations govern the fluid problem is the replacement 
of time derivative of integer order with fractional derivative 𝛼, 𝛽 or 𝛾. 
According to authors’ cognizance, fractional calculus is rarely used in 
heat and mass transfer analysis under influence of magnetic field 
embedded in porous medium. However, our aim is to investigate the 
impacts of heat and mass transfer in magnetohydrodynamic casson 
fluid embedded in porous medium. The generalized solutions have been 
traced out for the temperature distribution, mass concentration and 
velocity profiles under the existence and non-existence of transverse 
magnetic field and porosity. The corresponding solutions of 
temperature distribution and mass concentration, velocity profiles are 
expressed in terms of newly defined generalized Robotnov-Hartley 
function, wright function and Mittage-Leffler function respectively. All 
the corresponding solutions fulfill necessary conditions (initial, natural 
and boundary condition) as well. Caputo Fractionalized solutions have 
been converted for ordinary solutions by substituting 𝜁 = 1. Some 
similar solutions for the temperature distribution, mass concentration 
and velocity profiles have been particularized form generalized 
solutions. In order to have some cognizance about the behavior of fluid, 
the graphical illustrations for distinct parameters such as fractional and 
rheological parameters, prantl number, transverse magnetic field, 
permeability and few others parameters have been portrayed for fluid 
flows. 

GOVERNING EQUATIONS 

Let us assume unsteady and electrically conducting flow in casson 
fluid with heat and mass transfer along with oscillating plate in porous 
medium at 𝑦 = 0 and  𝑦  is the coordinate axis normal to the plate. At 
the beginning when 𝑡 = 0, the temperature 𝑇∞ for the fluid and plate 
are at rest conditions. When 𝑡 = 0+, that begins in oscillations in its 
own plane. Simultaneously, heat and mass transfer from the plate to the 
fluid proportionate to the temperature. We assume the rheology of 
equations for incompressible and isotropic casson fluid as in (Casson, 
1959).  

𝜏 = 𝜇𝜎̇+ 𝜏0,                                                                                         (1)   

or 
𝜏𝑖𝑗 = {2𝑒𝑖𝑗(𝑝𝑦 √2𝜋⁄ + 𝜇𝐵), 𝜋𝑐 < 𝜋}                                       

= {2𝑒𝑖𝑗(𝑝𝑦 √2𝜋𝑐⁄ + 𝜇𝐵), 𝜋 > 𝜋𝑐},                                              (2)  

Here, 𝜏, 𝜇, 𝜎̇, 𝜏0, 𝑒𝑖𝑗, 𝑝𝑦, 𝜋, 𝜋𝑐, 𝜇𝐵 are shear stress, dynamic viscosity, 
shear rate, casson yield stress, deformation rate, yield stress, product of 
components of deformation rate, critical value of non-Newtonian fluid, 
plastic dynamic viscosity respectively. Assuming the above 
assumptions, the equations governs the Casson fluid for free convection 
heat and mass transfer flow are stated as   

(𝜈 +
𝜈

𝛼
)
𝜕2𝑉(𝑦, 𝑡)

𝜕𝑦2
+ 𝑔𝛽𝐶(𝐶 − 𝐶∞) + 𝑔𝛽𝑇(𝑇 − 𝑇∞) −

𝜎𝐵0
2

𝜌
𝑉(𝑦, 𝑡) −

𝜇∅

𝑘
𝑉(𝑦, 𝑡) =

𝜕𝜁𝑉(𝑦, 𝑡)

𝜕𝑡𝜁
,                           

𝑘

𝜌𝑐𝑝

𝜕2𝑇(𝑦, 𝑡)

𝜕𝑦2
−

1

𝜌𝑐𝑝

𝜕𝑞𝑟
𝜕𝑦

=
𝜕𝜁𝑇(𝑦, 𝑡)

𝜕𝑡𝜁
,                             

𝐷
𝜕2𝐶(𝑦, 𝑡)

𝜕𝑦2
=
𝜕𝜁𝐶(𝑦, 𝑡)

𝜕𝑡𝜁
,                                                    

 (3) 

and  

𝐷𝑡
𝜁
𝐺(𝑡) =

{
 
 

 
 1

Γ(1 − 𝜁)
∫

𝑔′(𝑝)𝑡

(𝑡 − 𝑝)𝜁
𝑑𝑝,     0 < 𝜁 < 1

0

𝑑𝐺(𝑡)

𝑑𝑡
,                                            𝜁 = 1   

             (4) 

Equation (4) is the time fractional derivative operator given by Caputo 
(Podlubny, 1999). Here, 𝜈 is kinematic viscosity, 𝛼 represents Casson 
fluid parameter, 𝑔 is acceleration due to gravity,  𝛽𝐶  and 𝛽𝑇 are thermal 
expansion coefficient and fluid density, 𝜌 is specific heat at constant 
pressure, 𝑞𝑟 denotes radiative heat flux, 𝑐𝑝 is thermal conductivity and 
𝐷  is chemical molecular diffusivity. Meanwhile, Rosseland 
approximation the radiative flux vector  𝑞𝑟 becomes 𝑞𝑟 = −

𝜕𝑇4

𝜕𝑦

4𝜎′

3𝑘′
. 

While 𝜎′ is Stefan Boltzmann constant and 𝑘′ is mean absorption 
coefficient. using the Rosseland approximation and the temperature 
difference within the flow is sufficiently small, we arrive at 

𝑇4 ≅ 4𝑇∞
3 − 3𝑇∞

4,                                                                          (5) 

Implementing the radiative flux vector and equation (5) in equation 
(3)2, we get 

𝑘

𝜌𝑐𝑝

𝜕2𝑇(𝑦, 𝑡)

𝜕𝑦2
+
𝜕2𝑇(𝑦, 𝑡)

𝜕𝑦2
16𝜎′𝑇∞

3

3𝑘′

1

𝜌𝑐𝑝
=
𝜕𝜁𝑇(𝑦, 𝑡)

𝜕𝑡𝜁
,           (6) 

Under the above specification and assumption with Boussinesq 
approximation and implementing the few parameters of non-
dimensionalization, 

𝑃𝑟 =
𝑐𝑝𝜌𝜈

𝑘
, 𝑆𝑐 =

𝜈

𝐷
, 𝐺𝑟 =

𝜈𝑇∞𝑔𝛽𝑇

𝑈0
3 , 𝐺𝑚 =

𝜈(𝐶 − 𝐶∞)𝑔𝛽𝐶

𝑈0
3

𝑇∗ =
(𝑇 − 𝑇∞)

𝑇∞
,𝑁 =

16𝜎′𝑇∞
3

3𝑘′𝑘
𝐶∗ =

(𝐶 − 𝐶∞)

𝐶∞
,                     

𝑡∗ =
𝑡𝑈0

2

𝜈
, 𝑦∗ =

𝑦𝑈0
𝜈
, 𝑢∗ =

𝑢

𝑈0
,𝑀 =

𝜎𝜈𝐵0
2

𝜌𝑈0
,Φ =

𝜇∅

𝜈𝑘
,         

,   (7) 

we have following fractionalized differential equations (Shah et al.,

2016)  

𝑃𝑟
(1 + 𝑁)

𝐷𝑡
𝜁
𝑇(𝑦, 𝑡) −

𝜕2𝑇(𝑦, 𝑡)

𝜕𝑦2
= 0,                                         (8) 

𝑆𝑐𝐷𝑡
𝜁
𝐶(𝑦, 𝑡) −

𝜕2𝐶(𝑦, 𝑡)

𝜕𝑦2
= 0,                                                    (9) 

𝐷𝑡
𝜁
𝑉(𝑦, 𝑡) − (1 +

1

𝛼
)
𝜕2𝑉(𝑦, 𝑡)

𝜕𝑦2
− 𝐺𝑟𝑇(𝑦, 𝑡) − 𝐺𝑚𝐶(𝑦, 𝑡)          

+𝑀𝑉(𝑦, 𝑡) + Φ𝑉(𝑦, 𝑡) = 0.                                                     (10) 

Where, 𝑃𝑟, 𝑁, 𝑆𝑐, 𝜁, 𝐺𝑟, 𝐺𝑚, 𝑀, ∅, 𝑘, 𝛼, 𝑇(𝑦, 𝑡), 𝐶(𝑦, 𝑡), 𝑉(𝑦, 𝑡) are 
prandtl number, thermal radiation, schmidt number, caputo fractional 
parameter, thermal Grashof number, mass Grashof number, magnetic 
field, porosity, permeability, material parameter of Casson fluid, 
temperature distribution, mass concentration, velocity profile 
respectively. The corresponding non-dimensional necessary conditions 
are 

𝑇(𝑦, 0) = 𝐶(𝑦, 0) = 𝑉(𝑦, 0) = 0;      𝑦 ≥ 0,                         (11) 

𝑇(𝑦, 𝑡) → 𝐶(𝑦, 𝑡) → 𝑉(𝑦, 𝑡) → 0;      𝑎𝑠     𝑦 → ∞,              (12) 

𝑉(0, 𝑡) = 𝑈𝐻(𝑡)𝑐𝑜𝑠(𝜔𝑡)   𝑜𝑟  𝑉(0, 𝑡) = 𝑈𝐻(𝑡)𝑠𝑖𝑛(𝜔𝑡),

𝑇(0, 𝑡) = 𝑡, 𝐶(0, 𝑡) = 1                                                           
 (13) 

Equations (11), (12) and (13) are initial, natural and boundary 
conditions respectively. 

INVESTIGATION OF TEMPERATURE DISTRIBUTION 

For perusing the solution of temperature distribution, we apply Laplace 
transform on fractionalized differential equation (8) under 
consideration of equations (111), (121) and (131), we attain 
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𝑃𝑟 𝑠
𝜁 𝑇̅(𝑦, 𝑠)

(1 + 𝑁)
−
𝜕2𝑇̅(𝑦, 𝑠)

𝜕𝑦2
= 0                                                  (14) 

Writing equation (14) equivalently 

𝑇̅(𝑦, 𝑠) =
1

𝑠2
𝑒
−𝑦√

𝑝𝑟  𝑠
𝜁

(1+𝑁)

 
,                                                                       (15)  

Inverting equation (15) by Laplace transform and using the fact of 
inverse Laplace transform 

ℒ−1[ 𝑒𝑥𝑝(−𝜆2 𝑠
𝜆3)𝑠−𝜆1] = 𝚽(𝜆1,−𝜆3;−𝜆2𝑡

−𝜆3) 𝑡𝜆1−1,  𝜆2, 𝜆1 ≥ 0,
0 < 𝜆3 < 1, (Stankovi, 1970; Gorenflo, 1999)  we obtain 

𝑇(𝑦, 𝑠) = 𝚽[2,−
𝜁

2
 ; 𝑦√

𝑝𝑟
𝑡𝜁(1 + 𝑁)

],                                    (16) 

Where, the 𝚽(𝜆1, −𝜆2; 𝜆3) is the wright function (Stankovi, 1970; 
Gorenflo, 1999) defined as 

∑
(𝜆3)

𝛾

𝛾! Γ(𝜆1 − 𝜆2𝛾)

∞

𝛾=0

= 𝚽(𝜆1, −𝜆2; 𝜆3),   0 < 𝜆2 < 1,          (17) 

Equation (16) fulfills the initial condition, natural condition and 
boundary condition (111), (121) and (131) respectively 

INVESTIGATION OF MASS CONCENTRATION 

For exploring the general solution of Mass concentration, we apply 
Laplace transform on fractionalized differential equation (9) under 
consideration of equations (112), (122) and (132), we have 

𝑆𝑐 𝑠
𝜁 𝐶̅(𝑦, 𝑠) −

𝜕2𝐶̅(𝑦, 𝑠)

𝜕𝑦2
= 0,                                                (18) 

suitable expression of equation (18) is 

𝐶̅(𝑦, 𝑠) =
1

𝑠
𝑒− 𝑦√𝑆𝑐 𝑠

 𝜁
,                                                               (19) 

In order to have the solution of mass concentration in terms of 
generalized wright function, we express equation (19) in series form as  

𝐶̅(𝑦, 𝑠) =∑
(−𝑦√𝑆𝑐)

𝑗

𝑗!

∞

𝑗=0

𝑠
𝑗𝜁
2
−1,                                               (20) 

Inverting equation (20) by means of Laplace transform, we get 

𝐶(𝑦, 𝑠) =∑
(−𝑦√𝑆𝑐)

𝑗

𝑗! Γ (−
𝑗𝜁
2
+ 1)

∞

𝑗=0

𝑡−
𝑗𝜁
2 ,                                          (21) 

Expressing equation (21) in the form of generalized wright function, 
we get general solution of mass concentration as   

𝐶(𝑦, 𝑡) = 𝑾−𝜁
2
 ,1 
(−𝑦√

𝑆𝑐
𝑡𝜁 
),                                                  (22) 

Where the property of generalized wright function is  

∑
(𝜆1)

𝛾

𝛾! Γ(𝜆2𝛾 + 𝜆3)

∞

𝛾=0

= 𝐖𝜆2,𝜆3(𝜆1),                                           (23) 

Equation (22) fulfills the initial condition, natural condition and 
boundary condition (112), (122) and (132) respectively. 

INVESTIGATION OF VELOCITY PROFILES 

Case-I: 𝑽(𝟎, 𝒕) = 𝑼𝑯(𝒕)𝒄𝒐𝒔(𝝎𝒕) 

Applying Laplace transform on equation (10) having in mind the 
equations (113), (123) and (133), we traced  

𝑠𝜁 𝑉̅(𝑦, 𝑠) − (1 +
1

𝛼
)
𝜕2𝑉̅(𝑦, 𝑠)

𝜕𝑦2
+ 𝑀𝑉̅(𝑦, 𝑠) + Φ𝑉̅(𝑦, 𝑠)           

−𝐺𝑟𝑇̅(𝑦, 𝑠) − 𝐺𝑚𝐶̅(𝑦, 𝑠) = 0.                                               (24) 

Employing equation (15) and (19) into equation (24), we have 
simplified form as 

𝑉̅(𝑦, 𝑠) =
𝑈𝑠 𝑒

−𝑦√
𝑠𝜁+Φ+𝑀

1+
1
𝛼

𝑠2 + 𝜔2
                                                                 

−
𝐺𝑟 (1 + 𝑁) 𝑒

−𝑦√
𝑝𝑟 𝑠

𝜁

1+𝑁

𝑠2 [(1 +
1
𝛼
)𝑝𝑟 𝑠

𝜁 − (1 + 𝑁)(𝑠𝜁 + Φ +𝑀)]

             −
𝐺𝑚 𝑒

−𝑦√𝑆𝑐 𝑠
𝜁
 

𝑠 [(1 +
1
𝛼
) 𝑆𝑐 𝑠

𝜁 − (𝑠𝜁 + Φ+𝑀)]
,                      (25) 

expanding equation (25) takes the form in series as 

𝑉̅(𝑦, 𝑠) =
𝑈𝑠

𝑠2 + 𝜔2
+

𝑈𝑠

𝑠2 + 𝜔2
∑(

−𝑦√𝛼

√𝛼 + 1
)

𝑙∞

𝑙=1

1

𝑙!
                            

         ×∑
(−Φ −𝑀)𝑝Γ (

𝑙
2
+ 1)

𝑝!  Γ (
𝑙
2
− 𝑝 + 1) 𝑠𝜁𝑝−

𝜁𝑙
2

∞

𝑝=0

− 𝐺𝑟∑(−𝑦√
𝑝𝑟

1 + 𝑁
)

𝑙∞

𝑙=0

1

𝑙!
 

       ×∑(
𝛼(𝑁 + 1)

𝑝𝑟(𝛼 + 1)
)

𝑝+1∞

𝑝=0

∑
(−Φ−𝑀)𝑞Γ(𝑝 + 1)

𝑞! Γ(𝑝 − 𝑞 + 1)𝑠2+𝜁−
𝑙𝜁
2
+𝑞𝜁

∞

𝑞=0

     

−𝐺𝑚∑
(−𝑦√𝑆𝑐)

𝑙!

𝑙∞

𝑙=0

∑ (
𝛼

𝑆𝑐(𝛼 + 1)
)
𝑝+1

∞

𝑝=0

                           

       ×∑
(−

𝜙
𝑘
−𝑀)

𝑞

Γ(𝑝 + 1)

𝑞!  Γ(𝑝 − 𝑞 + 1)𝑠𝜁− 
𝑙𝜁
2
+𝑞𝜁+1

∞

𝑞=0

,                                 (26) 

using inverse Laplace transform on equation (26) with convolution 
property, we get 

𝑉(𝑦, 𝑡) = 𝑈𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡)  + 𝑈𝐻(𝑡)∫ 𝑐𝑜𝑠𝜔(𝑡 − 𝜏)
𝑡

0

                  

      +∑(
−𝑦√𝛼

√𝛼 + 1
)

𝑙∞

𝑙=1

1

𝑙!
∑

(−Φ−𝑀)𝑝Γ (
𝑙
2
+ 1) 𝑡𝜁𝑝−

𝑙𝜁
2
−1

𝑝! Γ (
𝑙
2
− 𝑝 + 1)

∞

𝑝=0

𝑑𝜏 

     −𝐺𝑟∑(−𝑦√
𝑝𝑟

1 + 𝑁
)

𝑙∞

𝑙=0

1

𝑙!
 ∑(

𝛼(𝑁 + 1)

𝑝𝑟(𝛼 + 1)
)

𝑝+1∞

𝑘=0

                         

×∑
(−Φ−𝑀)𝑞Γ(𝑝 + 1) 𝑡𝜁+𝑞𝜁−

𝑙𝜁
2
+1

𝑞! Γ(𝑝 − 𝑞 + 1)

∞

𝑞=0

                                 

−𝐺𝑚∑
(−𝑦√𝑆𝑐)

𝑙!

𝑙∞

𝑙=0

∑ (
𝛼

𝑆𝑐(𝛼 + 1)
)
𝑝+1

∞

𝑝=0

                                

×∑
(−Φ−𝑀)𝑞Γ(𝑝 + 1) 𝑡𝜁+𝑞𝜁−

𝑙𝜁
2

𝑞!  Γ(𝑝 − 𝑞 + 1)

∞

𝑞=0

,                           (27) 
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implementing generalized Mittage-Leffler function on equation (27), 
we obtain the compact form of velocity field 

𝑉(𝑦, 𝑡) = 𝑈𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡)  + 𝑈𝐻(𝑡)∫ 𝑐𝑜𝑠𝜔(𝑡 − 𝜏)
𝑡

0

                  

              ×∑(
−𝑦√𝛼

√𝛼 + 1
)

𝑙∞

𝑙=1

1

𝑙!
 𝑴

𝜁,−
−𝜁
2

𝑙
2
−𝑝+1

(−𝑡𝜁Φ − 𝑡𝜁𝑀)𝑑𝜏     

            −𝐺𝑟∑(−𝑦√
𝑝𝑟

1 + 𝑁
)

𝑙∞

𝑙=0

1

𝑙!
 ∑ (

𝛼(𝑁 + 1)

𝑝𝑟(𝛼 + 1)
)

𝑝+1∞

𝑝=0

             ×𝑴
𝜁,−

𝑙𝜁
2
+𝜁+2

𝑝−𝑞+1
(−𝑡𝜁Φ − 𝑡𝜁𝑀) − 𝐺𝑚∑

(−𝑦√𝑆𝑐)

𝑙!

𝑙∞

𝑙=0

            ×∑(
𝛼

𝑆𝑐(𝛼 + 1)
)
𝑝+1

∞

𝑝=0

𝑴
𝜁,−

𝑙𝜁
2
+𝜁+1

𝑝−𝑞+1
(−𝑡𝜁Φ − 𝑡𝜁𝑀), (28) 

Where, the property of generalized Mittage-Leffler function is 
(Muhammad et al., 2015)  

𝑡𝜂−1𝐸𝜉,𝜂
𝜒 (𝑄) = 𝑡𝜂−1∑

(𝑄)𝑗Γ(χ + j)

Γ(𝜒)Γ(𝜉𝑗 + 𝜂)

∞

𝑗=0

= 𝑴𝜉,𝜂
𝜒 (𝑄),                    

𝑅𝑒(𝜉) > 0,    𝑅𝑒(𝜂) > 0.                                                           (29) 

Case-II: 𝑽(𝟎, 𝒕) = 𝑼𝑯(𝒕)𝒔𝒊𝒏(𝝎𝒕) 

Employing identical procedure we have solution for case-II: 𝑉(0, 𝑡) =
𝑈𝐻(𝑡)𝑠𝑖𝑛(𝜔𝑡),  

𝑉(𝑦, 𝑡) = 𝑈𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡)  + 𝑈𝐻(𝑡)∫ 𝑠𝑖𝑛𝜔(𝑡 − 𝜏)
𝑡

0

                   

×∑(
−𝑦√𝛼

√𝛼 + 1
)

𝑙∞

𝑙=1

1

𝑙!
 𝑴

𝜁,−
−𝜁
2

𝑙
2
−𝑝+1

(−𝑡𝜁Φ − 𝑡𝜁𝑀)𝑑𝜏     

−𝐺𝑟∑(−𝑦√
𝑝𝑟

1 + 𝑁
)

𝑙∞

𝑙=0

1

𝑙!
 ∑ (

𝛼(𝑁 + 1)

𝑝𝑟(𝛼 + 1)
)

𝑝+1∞

𝑝=0

      

   ×𝑴
𝜁,−

𝑙𝜁
2
+𝜁+2

𝑝−𝑞+1
(−𝑡𝜁Φ − 𝑡𝜁𝑀)  − 𝐺𝑚∑

(−𝑦√𝑆𝑐)

𝑙!

𝑙∞

𝑙=0

           ×∑(
𝛼

𝑆𝑐(𝛼 + 1)
)
𝑝+1

∞

𝑝=0

𝑴
𝜁,−

𝑙𝜁
2
+𝜁+1

𝑝−𝑞+1
(−𝑡𝜁Φ − 𝑡𝜁𝑀). (30) 

LIMITING CASES 

ORDINARY SOLUTION FOR TEMPERATURE DISTRIBUTION WHEN 
𝜻 → 𝟏. 

Letting 𝜁 → 1 in equation (15) and simplifying with the help of 
convolution theorem and fact of fractional calculus, we get 

𝑇(𝑦, 𝑠) = ∫ (𝑡 − 𝜏)
𝑡

0

(−𝑦√
𝑝𝑟

(1 + 𝑁)
)

𝑠√𝜋𝑡3
𝑒− 

(
𝑦2 𝑝𝑟
(1+𝑁)

)

4𝑡  𝑑𝜏,           (31) 

TEMPERATURE DISTRIBUTION IN THE ABSENCE OF THERMAL 
RADIATION WHEN 𝑵 → 𝟎. 

Taking 𝑁 → 0 in equation (15), we recovered the solution of 
temperature distribution without thermal radiation in terms of 
Robotnov-Hartley function as 

𝑇(𝑦, 𝑠) = ∫ (𝑡 − 𝜏)
𝑡

0

𝑭−𝑘
2

(−𝑦√𝑝𝑟 , 𝑡) 𝑑𝜏,                              (32) 

Where, the property of Robotnov-Hartley function is  

𝑭𝛼(𝛽 , 𝑡) =∑
𝛽𝑖 𝑡𝐷𝑖−1

Γ(𝐷𝑖)

∞

𝑖=0

,                                                          (33) 

ORDINARY SOLUTION FOR MASS CONCENTRATION 

WHEN 𝜻 → 𝟏. 

Substituting 𝜁 → 1 in equation (19) and simplifying by using the fact 
of fractional calculus for error complementary function, we get 

𝑇(𝑦, 𝑠) = 𝑒𝑟𝑓𝑐 (
𝑦√𝑆𝑐

2√𝑡
),                                                           (34) 

It is also pointed out that we can retrieve various solutions for velocity 
field for instance, taking 𝜁 → 1,𝑀 → 0, and ∅ → 0 in equation (28) 
solutions can be recovered for ordinary differential equations, without 
magnetic effects and without porous medium respectively.    

CONCLUDING REMARKS 

This Portion is dedicated to highlight the major impacts of heat and 
mass transfer in magnetohydrodynamic casson fluid embedded in 
porous medium. The generalized solutions have been traced out for the 
temperature distribution, mass concentration and velocity profiles 
under the existence and non-existence of transverse magnetic field, 
permeability and porosity. The corresponding solutions of temperature 
distribution and mass concentration, velocity profiles have been 
expressed in terms of newly defined generalized Robotnov-Hartley 
function, wright function and Mittage-Leffler function respectively. All 
the corresponding solutions fulfill necessary conditions (initial, natural 
and boundary conditions) as well. Caputo Fractionalized solutions have 
been converted for ordinary solutions by substituting 𝜁 = 1. Some 
similar solutions for the temperature distribution, mass concentration 
and velocity profiles have been particularized form generalized 
solutions as the limiting cases. In order to emphasize vivid effects of 
implemented rheology, we have depicted various graphs listed as 1-7. 
However, we perused main finding enumerated as under: 

(i).   Fig. 1 is prepared to highlight the effects of varying time, it is noted 
that scattering behavior of fluid flow is perceived in creeping for mass 
concentration, temperature distribution and velocity field at whole 
domain of heated plate.  

(ii). The characteristics of fluid flows with increasing fractional 
parameter (𝜁) are depicted in Fig. 2. It is noted that velocity field and 
temperature distribution are increasing with increment in fractional 
parameter (𝜁) in the range 0.2 ≤ 𝜁 ≤ 0.6. Further as predicted, mass 
concentration has strong influence on fractional parameter (𝜁). 

(iii).   Fig. 3 shows the impacts of prandtl number (𝑃𝑟) on mass 
concentration. Prandtl number (𝑃𝑟) has vital role on the process of mass 
transfer. It is seen in Fig.3 for mass concentration that ratio of thickness 
between concentration boundary layer and viscous is characterized. In 
continuation, identical effects between prandtl number (𝑃𝑟) and 
schmidt number (𝑆𝑐) are seen in temperature and concentration. 
Temperature distribution scattered significantly while increasing 
thermal radiation 𝑁.  

(iv).  While increasing thermal Grashof number, mass Grashof number, 
transverse magnetic field and porosity, similar impacts have been 
observed in opposite direction over the boundary for velocity field in 
Fig. 4 and 5.  

(v).  Fig. 6 displays comparison between four models of fluid namely 
(i) fractionalized Casson fluid with porous, (ii) fractionalized Casson 
fluid with transverse magnetic field, (iii) fractionalized Casson fluid 
without porous and (iv) fractionalized Casson fluid without transverse 
magnetic field. Comparison of four models has been underlined at 
different time for velocity field. It is observed that among four models 
of fluid, fractionalized Casson fluid without transverse magnetic field 
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Fig. 1 Profile of mass concentration, temperature distribution and velocity field. 

Fig. 2 Profile of mass concentration, temperature distribution and velocity field. 

Fig. 3  Profile of mass concentration and temperature distribution. 

Fig. 4 Profile of velocity field. 
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Fig. 7 Profile of velocity field. 
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Fig. 5  Profile of velocity field. 

Fig. 6  Profile of velocity field. 

Fig. 7 Profile of velocity field. 

moves fastest at all the time as expected. This is due to the fact that 
absence of effective rheology (magnetized material, chemical reaction, 
porous, permeability, etc.) on fluid. 

(vi). On contrary, Fig. 7 is depicted for ordinary casson fluid (𝜁 = 1)

with four models as discussed in (v). It is observed that contrasting 
behavior of fluid is traced out in comparison with Fig. 6. The same 
comparison can be made on mass concentration and temperature 
distribution.    
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