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Abstract 

In this study, it is presented exact expressions for the Max-min rodeg index of bridge graphs. 
Moreover, the Max-min rodeg index of fullerenes and link of fullerenes is computed. The Max-min 
rodeg index (Mmsde) which is vertex degree-based topological index has attracted attention and 

gained popularity. This index is defined as ∑max {√√𝑑𝑢,√𝑑𝑣}/min{√𝑑𝑢,√𝑑𝑣}. A fullerene graph is a 
cubic planar graph whose faces are pentagons and hexagons.  
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INTRODUCTION 
Chemical graph theory is a branch of mathematical chemistry 

which deals with the nontrivial applications of graph theory to solve 

molecular problems. In general, a graph is used to represent a 

molecule by considering the atoms as the vertices of the graph and the 

molecular bonds as the edges. The main goal of chemical graph theory 

is to use algebraic invariants to reduce the topological structure of a 

molecule to a single number which characterizes either energy of the 

molecule as a whole or its orbital, its molecular branching, structural 

fragments, and its electronic structures, among others. 

A molecular graph G=(V(G),E(G)) is a simple graph having 

n=|V(G)| nodes and m=|E(G)| edges. The nodes vi ∈ 𝑉(𝐺) represent 

non-hydrogen atoms and the edges vivj ∈ 𝐸(𝐺) represent covalent 

bonds between the corresponding atoms. In particular, hydrocarbons 

are formed only by carbon and hydrogen atoms and their molecular 

graphs represent the carbon skeleton of the molecule. Note that 

hydrogen atoms are often omitted. 

A graph-based molecular descriptor or graph invariant, commonly 

known as topological index, is a graph-theoretic invariant 

characterizing numerically the topological structure of a molecule 

(Gutman, 1990). These graph theoretic invariants are expected to 

correlate with physical observables measures by experiments in a way 

that theoretical predictions can be used to gain chemical insights even 

for not yet existing molecules. 

Topological indices are used for studying the properties of 

molecules such as structure-property relationship (QSPR), structure-

activity relationship (QSAR) and structural design in chemistry, 

nanotechnology  

and pharmacology. Its main role is to work as a numerical molecular 

descriptor in QSAR/QSPR models (Shafiei, 2015; Vukičević, 2011). 

The first topological index is the Wiener index which was 

introduced by Harold Wiener in 1947 and used it to determine physical 

properties of types of alkenes known as paraffin (Wiener, 1947). It 

was used for the correlation of measured properties of molecules with 

their structural features by H. Wiener.  

In 2010, D. Vukicevic and M. Gasperov introduced Adriatic 

indices that obtained by the analyses well known indices such as 

Randic  

and Wiener index and QSAR and QSPR studies of them have been  

performed (Vukičević  and Gašperov, 2010). It is defined three classes of 

Adriatic descriptors. One of these descriptors is the Discrete Adriatic 

descriptors which consist of 148 descriptors. They have very good 

predictive properties. So, many scientists studied these indexes. One of 

the Discrete Adriatic descriptors is max-min rodeg index. Max-min rodeg 

index is defined as 

 
 

 

 (G) (G)

max , max d ,
(G)

min d ,min ,

u v u v

sde

uv E uv E u vu v

d d d
Mm

dd d 

   

where 
ud is denoted as the degree of vertex u (Vukičević, 2010; 

Vukičević  andGašperov, 2010). This index give the best predictor for 

enthalpy of vaporization and standard enthalpy of vaporization in the 

set of octane isomers and also for log water activity coefficient in the 

set of polychlorobiphenyles. We encourage reader to references 

(Azari et al., 2013; De, 2017; Ghorbani  and Hosseinzadeh, 2010; 

Ghorbani  and Khaksari, 2017; Gutman, 1990; Iranmanesh  and 

Zeraatkar, 2011; Kanna et al., 2017; Mansour  and Schork, 2009a, 

2009b, 2010; Nazir et al., 2017). 

To be a closed shape, a fullerene should exactly have 12 pentagon 

sides, but the number of hexagon sides can be extremely variable. 

Fullerenes were discovered in 1985 by Kroto et al., (1985) and are 

named after Richard Buckminster Fuller. Fullerenes are molecules in 

the form of cage-like polyhedra, consisting only of carbon atoms. 

Moreover, a fullerene graph is a cubic planar 3-regular graph whose 

faces are 12 pentagons only and F6 hexagons. Therefore the general 

formula for carbon fullerenes can be given C{20+2F6}. The general 

formula for carbon fullerenes is C{20+2F6} (F6≥0 and F6≠1) with the 

number of hexagonal faces F6=20 for C60. The smallest possible 

fullerene is C20 (F6=0) and the most famous fullerene molecule is C60

with 12 pentagons and 20 hexagons. Suppose G is a fullerene 
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molecule containing n carbon atoms. This graphs have 12 pentagonals 

and (n/2-10) hexagonal faces where n≥20 and n≠22. The number of 
edges of fullerene graph, |E(G)| are ((3n)/2), see (Ghorbani  and 

Hosseinzadeh, 2010; Koorepazan-Moftakhar  and Ashrafi, 2013)
for details. 

    Schwerdtfeger et al. (2015) presented a general overview of recent 

topological and graph theoretical developments in fullerene research 

over the past two decades, describing both solved and open problems. 

A number of chemical properties of a fullerene can be derived from its 

graph structure. 

    There are infinitely many fullerenes in many different shapes 

depending on the distribution of the pentagons. Using experimental 

techniques, new fullerene with interesting chemical and physical 

applications is synthesized which require more information about their 

thermodynamic stability and electronic properties. It is quite difficult 

for quantum chemistry. But, fullerene graphs contain all the 

information we need, and we are able to sort out the millions of 

isomers, finding a few candidates for the most stable, by way of 

simple, easily computed topological indices. Topological index of 

fullerenes were studied by many scientists (Yaser Alizadeh et al., 

2014; Yaser Alizadeh et al., 2012; Y Alizadeh et al., 2009).  

In this paper, we study recently defined the Max-min rodeg index. 

It is computed the Max-min rodeg index of link of any two graphs and 

bridge graphs. And also, it is presented exact expressions for the Max-

min rodeg index of link of fullerenes. 

RESULTS AND DISCUSSION 

Definition 1. Let  
1

d

i i
G


be a set of finite pair wise disjoint molecular 

graphs with (G )i iv V . For given vertices 
1 1(G )v V and 

2 2(G )v V

, a link or bridge of two graphs 
1G and 

2G is defined as the graph 

21 1 2(v , v )G G obtained by joining v₁ and v₂ by an edge (see figure 

1). For simply we show the bridge (link) of two graphs G₁ and G₂ by 

21G G . 

Fig. 1  Bridge of two graphs

There are two types of bridge graphs.  

Definition 2. The bridge of graphs 
21 ,. ,, .. dGG G obtained joining a 

vertex of  (G )iV with a vertex of 
1(G )iV 

and a vertex of 
2(G )iV 

with same vertex of 
1(G )iV 

, i=1,...,d-2 (fig. 2) is 
21 ... dGG G  

. 

If 
21 ... dG GG G    then we use of the notation 

d

G G . 

Fig. 2  The bridge of graphs G₁,G₂,…,Gd 

Definition 3. The bridge of graphs 
21 ,. ,, .. dGG G obtained joining a 

vertex of (G )iV with a vertex of 
1(G )iV 

(
1 1( )i iv V G  ) by an 

edge and different a vertex of 
1(G )iV 

(
1 1i iv x  ,

1 1( )i ix V G  ) 

with a vertex of 
2( )iV G 

by an edge, i=1,...,d-2 (fig. 3) is defined as 

the graph 
21 ...

l l l

dG G G   . If 
21 ... dG GG G    then we use of 

the notation 
dl

G G . 

Fig. 3  The bridge of graphs 
21 ,. ,, .. dGG G

      We can write that the max-min Rodeg index of G as 

 
(G)

sde

uv E

Mm G 


  in which for the edge ( )uv E G , 

 
 

 

max ,
,

min ,

u v

u v

u v

d d
d d

d d
   . 

Theorem 1. Let G be a fullerene graph. The Max-min Rodeg index 

of G is 

 
3

.
2

sde

n
Mm G 

Proof. If G is a fullerene graph then for each edge uv of G , 

 
 

 

max 3,3
, 1

min 3,3
u vd d   and 3

(G)
2

n
E  .  From definition of 

max-min rodeg index, we obtain 

 
 

 (G)

max 3,33 3
(G) , .

2 min 3,3 2
sde u v

uv E

n n
Mm d d


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Theorem 2. Consider the graph 
1G and 

2G . The Max-min rodeg 

index of 
21G G is as follows: 

     

    
1 2

1,2

1 1 2

)

2

(G

(G ) 1, 1

, 1 ,
i i i i

i i i
i

sde sde sde v v

u v u v

u v E

Mm G Mm G Mm d dG

d d d d



 





    

  





where 
ivd denoted to the degree of vertex (G )i iv V , i=1,2. 

Proof. Let 
1 1(G )v V and 

2 2(G )v V . Then, 

   

 

1 2
, , 1,21 2

1 2

1 2

1

(G )

2

(G ) (G )

, 1

1, 1

i i

i i i
v u v u v v i

sde u v

uv E uv E u v E

v v

v v

GMm G d d

d d

  



  

  

   

 





  



where 
'E is the set of edge joining 

1 1(G )v V with 
2 2(G )v V by 

an edge. From definition of the Max-min rodeg index, we obtain 
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     

     

1 1

1 1 1

2 2 1 2

2 2 1
1,2

1 1 2

(G )

(G ) (G )

2 , (G )

, , 1 1, 1 .
i i

i i i
i
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u v E
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u v E u v E

Mm G Mm G d d Mm

d d d

G

d d d


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



 

  

    







 

Corollary 1. Let G be a fullerene graph. The Max-min rodeg index 

of G G is 

 
4 3

3 1.
3

sdeMm G nG   

Proof. By using Theorem 2, we have 

        

 
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(G)
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


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



 



and it is easy to see that  

 , 1u vd d  ,  
 

 

max 3,4 2 3
, 1

min 3,4 3
u vd d   

,  

 
 

 1 2

max 4,4
1, 1 1

min 4,4
v vd d    

Then, we obtain following equation: 

   
2 3

2 2 1 1.
3

sde sdeMm GG Mm G
 

     





From Theorem 1, the proof is completed. 

Theorem 3. Consider graphs 
21 ,. ,, .. dGG G in figure 2. The Max-min 

rodeg index of 
2

*

1 ... dGG GG    is 

     

     
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 

where 
'E is the set of all edges joining (G )i iv V with 

1 1(G )i iv V  by an edge, i=1,...,d-1. 

Proof. In a similar way, we have 

   

     

 

,

1 2 1

1,

1

1

1
*

1 (G ) 2 (G )

(G )

2

2 (G )

, 2

, 1 1, 2 2, 1

2, 2 .

i

i i i
u v vi

j d d

j j

j d

i i

i i i

d d

sde u v

i uv E i uv E

u v v v v v

uv E

d

v v

i v v E

Mm G d d

d d d d d d

d d
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

 

From definition of the Max-min rodeg index, we can write 

       

     

 

1

1 2

1,

1

1

*

1 1

1

2 (G ) (G )

2

2 (G )

, 2, 1

, 2 , 1 1, 2

2, 2 .
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i j
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d
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i v v E
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d d d d d d
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
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

 

     

     

  

 

  

 

Corollary 2. Let G be a fullerene. Then, the Max-min rodeg index of 
d

G G is 

3
15 2 2 15 4 3 5 3.

2
e

d

sd

n
Mm G dG

  
         

   


Proof. Let *G be 
d

G G . From Theorem 3, we get 

     

   

   

 

1,

1 2 1

1

1

*

1 1 (G)

1

(G) 2 (G)

2

2 (G)

,

, 1 , 2

1, 2 2, 2

2, 1 .

i

i

j i

j i

j d

i i

i i

d d

d d

sde sde u v

i i uv E

d

u v u v

uv E i uv E

d

v v v v

i v v E
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








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

  



 

 

   

     

  

  

  

 

Note that 3ud  and    2, 2 , 1u v u vd d d d     ,  

 
 

 

max 3,4 2 3
, 1

min 3,4 3
u vd d   

,  

   
 

 

max 4,5 5
2, 1 1, 2

min 4,5 2
u v u vd d d d        , 

 
 

 

max 3,5 15
, 2

min 3,5 3
u vd d    . 

Then 

     

     

   

1 2

1,

1 1

1

*

1 1 (G)

1

2 (G) (G)

2

2 (G)

,

, 2 , 1 1, 2

2, 2 2, 1 .

i

i

i j

i j

j d

i i d d

i i

d d

sde sde u v

i i uv E

d

u v u v v v

i uv E uv E

d

v v v v

i v v E

Mm G Mm G d d

d d d d d d

d d d d



  

 



 



  



  



 

  

     

     

  

  

 

Or 

   
1

*

1 1 2

2

2

15 2 3
3.1 3. 3.

3 3

2 3 5 5
3. 1.1 .

3 2 2

d d d

sde sde

i i i

d

i

Mm G Mm G


  





    

  

  



Or 

     

 

* 3 2 15 4 3 5

3 .

sde sdeMm G dMm G d d

d

     

 

By using Theorem 1, this proof is completed. 

    Now, we compute the Max-min rodeg index of bridge graphs for 

other type: 

Theorem 4. Consider graphs 
21 ,. ,, .. dGG G in figure 3. Let  

2

*

1 ... .
l l l

dG GG G    Then 
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     

   

 

'

1

1

1

1

1

1
*

1 (G )

1 (G ) (G )

2 (G )

, 1 1, 1

( ) , ,

, 1

i i i

i i i i

i i

i i i i
u v u xi i

i

i i

d

sde u x x v

i ux E x v E

d

sde i u x u v

i ux E uv E

d

u v

i uv E

Mm G d d d d

Mm G d d d d

d d

 

 






 







  

  

 

 
      

 

 
   
  
 

 

  

  

 

where E′ is the set of all edges joining vertices of V(Gi) with vertices 

of V(Gi+1), i=1,...,d-1. 

Proof. Let  

 ' *

1( ) ( ), (G ), i 1,...,d 1i i i i i iE x v E G x V G v V       . 

So, we have 

   

   

, , 1

1
'

1

1
*

1 (G ) 1 (G )

1

2 (G ) 1

, 1

, 1 1, 1 .

i

i i i
u v x vi i

i i i

i i i i

d d

sde u x

i uv E i ux E

d d

u v x v

i uv E i x v E

Mm G d d

d d d d

 

 

 







   



   

   

   

   

   

Or we get 

     
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Corollary 3. Consider G fullerene graph. The Max-min rodeg index 

of 
dl

G G is 

 * 3
4 3 5 5 4 3.

2
sde

n
Mm G d

 
     

 

Proof. Let *G be 
dl

G G . From Theorem 4 and 3ud    for (G)u V

, 

we can write 

      

      

1

1

*

1

1

2 1

( ) 3 , 3 ,

3 , 1 3 , 1 1. 1, 1 .

i i

i i i i

d

sde sde i u x u v

i

d d

u v u x x v

i i

Mm G Mm G d d d d

d d d d d d

 

  









 

  

      



 

We known that *

0, (G )dx v V and  
2 3

, 1
3

x vd d  

   1, 1 , 1,x v x vd d d d     . Then, 

       

 

*

1

2 3
( ) 3 1 .1 3 1 .1 3 1

3

2 3
1 3 1.1

3

d

sde sde i

i

Mm G Mm G d d d

d



      

 
    

 



or 

    * 3
1 4 3 5 .

2
sde

n
Mm G d d   

CONCLUSION 

In this paper, exact computing formulae for the Max-min rodeg index 

which is vertex- degree based topological index of fullerene and of 

link of fullerene were obtained. Also, the Max-min rodeg index of 

bridge graphs was computed. There are infinitely many fullerenes in 

many different shapes depending on the distribution of the pentagons. 

We need more information about new fullerenes. This index give the 

best predictor for enthalpy of vaporization and standard enthalpy of 

vaporization in the set of octane isomers and also for log water activity 

coefficient in the set of polychlorobiphenyles. So, our results will help 

to predict certain physico-chemical properties such as standard 

enthalpy of vaporization, enthalpy of log water activity coefficient so 

on. 
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