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Abstract 

The study on the recombinant behavior of double-stranded DNA molecules has led to the 
mathematical modelling of DNA splicing system. The interdisciplinary study is founded from the 
knowledge of informational macromolecules and formal language theory. A splicing language is 
resulted from a splicing system, in which different types of splicing langauges have been researched 
previous, namely adult/inert, transcient and first order limit language.  Recently, second order limit 
language has been extensively explored from the first order limit language. Therefore, in this paper, 
a laboratory experiment was conducted to validate the existence of a second order limit language. To 
accomplish it, an initial strand of double-stranded DNA, amplified from bacteriophage lambda, was 
generated through polymerase chain reaction to generate thousands of copies of double-stranded 
DNA molecules. A restriction enzyme and ligase were added to the solution to complete the reaction. 
The reaction mixture was then subjected to polyacrylamide gel electrophoresis to separate biological 
macromolecules according to their sizes. A mathematical model derived at the early study was used 
to predict the approximate length of each string in the splicing language. The results obtained from 
the experiment are then used to verify the mathematical model of a second order limit language. This 
study shows that the theory on the second order limit language is biologically proven hence the model 
has been validated. 
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INTRODUCTION 

Each living organism is differentiated based on the unique molecule 

that is deoxyribonucleic acid (DNA). Two important roles of DNA are 

to generate code for the production of protein and self-replication that 

allows it to transfer information from parent cells to offspring cells [1]. 

DNA molecules are composed of nucleotides. A complete nucleotide 

consists of a phosphate group, a sugar group and a nitrogenous base. 

There are four types of nitrogenous bases which are adenine (A), 

guanine (G),  cytosine (C) and thymine (T), which later can be grouped 

as purine (A and G) and pyrimidine (C and T).  Watson-Crick 

complementarity [2] stated that the only possible pairings that could 

exist between the nucleotides are A with T, C with G and vice versa. 

Phosphodiester bonds link one nucleotide to another to form a single-

stranded DNA. The pairs among the bases then form hydrogen bonds. 

By combining those two bonds, a double-stranded DNA (dsDNA) is 

formed [3]. 

Restriction enzyme is a type of enzyme that cuts DNA at a 

particular nucleotide sequence [4]. The DNA molecule that is cut by 

the enzyme can have blunt or staggered ends (5 -overhang or 
3 -

overhang). Those fragments can be joined together by the presence of 

an enzyme called ligase. It will then produce the same or new hybrid 

DNA molecules. 

Head, who is a pioneer in the mathematical modelling of a splicing 

system has created an interdisciplinary study that links both the 

informational macromolecules and formal language theory [5].  In the 

model,  , , ,S A I B C represents a set of finite alphabets A, a set of 

initial strings I, and a set of finite sets, namely pattern B or C, which is 

a triple of c, x, d in  A*, where A* denotes the set of all strings over an 

alphabet A, which is obtained by concatenating zero or more symbols 

from A [6]. The complementary bases, [A/T], [C/G], [G/C] and [T/A] 

can be written as a set of alphabets a, c, g and t respectively. The DNA 

molecule that has been cut by the restriction enzyme may produce 5 -

overhang or blunt end which is assigned to pattern B and the molecule 

with 3 -overhang is assigned to pattern C. 

Yusof-Goode (Y-G) splicing system, which is a revised model of 

Head and Goode-Pixton splicing system was introduced in 2011 [7, 8]. 

The research on the splicing system has covered two issues: a model 

based on the generation of language, and a model to preserve the 

biological characteristics of the splicing process. The Y-G model is 

used in this research since it is proven to present the transparent 

behavior of the DNA splicing process.  

Different types of splicing language were proven to exist when 

some experiments were carried out to verify the existence of various 

types of splicing language. Basically, the experiment is conducted 

either in one stage or two stages. The experiment that is conducted in 

one stage involves one or more restriction enzymes at a time. 

Meanwhile, the experiment in two stages involves only one restriction 

enzyme at a time in the reaction. Then, another enzyme is added to 

continue the reaction.  

Laun and Reddy [9] conducted a one stage experiment by using 

BglI and DraIII to investigate the accuracy of the model which predicts 

the behavior of Head splicing system. Fong in 2008 [10] had conducted 

a two stages experiment in order to verify the mathematical model of 

splicing system and to show the difference between adult and limit 
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language by using two restriction enzymes namely, AciI and HpaII. In 

2011, Yusof [11] conducted a one stage experiment that involved AciI 

and AclI to verify the existence of inert persistent, transient and active 

languages and also to validate the non-uniqueness of limit language. 

Karimi in 2013 used CviQI and Acc65I in a two stages experiment to 

validate the behavior of persistent splicing system. Other than that, 

Colosimo [12] also used the concepts of informational macromolecules 

and formal language theory but with a different purpose, that is to 

explore the non-random structures in gene sequences. Biologically, a 

limit language is the remaining molecules after the splicing system has 

reached its equilibrium state or is completed [13]. Recently, the study 

of limit language has been extended to the second order limit language 

[14]. 

In this paper, a mathematical model of a second order limit 

language is proposed for the Y-G splicing system involving a restriction 

enzyme, namely DpnII at one stage and the expected results are 

presented. In addition, the procedures of conducting the experiment are 

discussed. The results obtained from both means are interpreted and 

discussed. 

This paper is organised as follows: the first section is the 

introduction, followed by the second section in which fundamental 

definitions are presented. The third section discusses the mathematical 

modelling of the second order limit language. In the fourth section, the 

procedures of conducting the experiment are discussed. Finally, a 

conclusion on the findings is presented in the last section. 

PRELIMINARIES 

In this section, some fundamental definitions of this research and 

some types of splicing language used in this paper are given. 

The first three basic definitions relate to formal language theory, 

namely alphabet, string and language. 

Definition 1 [6] An alphabet, A, is a finite, nonempty set of symbols. 

Definition 2 [6] A string is a finite sequence of symbols from the 

alphabet. 

Definition 3 [6] A set of strings all of which are chosen from some A*, 

where A is a particular alphabet, is called a language.  

In the molecular biology, complementary bases are represented as 

a set of alphabets and initial strands of dsDNA molecules are 

represented as a set of initial string. Besides, restriction enzymes are 

represented as a set of rules. Meanwhile, dsDNA molecules obtained 

from the splicing process are represented by language. 

The concatenation between two languages, L1 and  L2 has been 

given in [2] where  1 2 1 2| , .L L xy x L y L  

Furthermore: 
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The definition of a Y-G splicing system is given in the following. 

Definition 4 [7] A splicing system  , ,S A I R consists of a set of 

alphabets A, a set of initial strings I in A* and a set of rules, r R where  

r = (u, x, v: y, x, z). For 1s uxv  and 2s yxz  elements of I, 

splicing 1 2and s s using r produces the initial string I together with 

and ,uxz yxv    presented in either order where 

*, , , , , , , and u x v y z A     are the free monoids generated by A with 

the concatenation operation and 1 as the identity element. 

Two types of splicing languages are discussed in this paper, namely 

transient and limit languages [14].  Experimentally, a splicing language 

is called transient if a set of strings is eventually used up and disappear 

in a given system. On the other hand, a splicing language is a limit 

language or known as the first order limit language given that it is the 

set of words that is predicted to appear if some amount of each initial 

molecule is present, and sufficient time has passed for the reaction to 

reach its equilibrium state, regardless of the balance of the reactants in 

a particular experimental run of the reaction. 

In the following, the definition of the second order limit language 

is given. 

Definition 5 [14] Let L(S) be a splicing language of a splicing system, 

S and L1(S) is the first order limit language. A splicing language is 

called a second order limit language, L2(S) if the set of strings produced 

in L2(S) is distinct from the set of strings of L(S) in which 

   2L S L S  and    1 2 .L S L S

In the next section, a mathematical model of the second order limit 

language is developed. 

MATHEMATICAL MODELLING OF SECOND ORDER LIMIT 
LANGUAGE 

In this section, a mathematical model of the second order limit 

language that has two cutting sites is developed. The splicing language 

is generated based on the given rule. Next, the second order limit 

language is also generated in the general form. 

Let  , ,S A I R be a Y-G splicing system consisting of a set of 

alphabets,  , , , ,A a c g t   a set of initial strings,  ,I gatc gatc  

and a set of rules,  R r such that  1; ,1:1; ,1r gatc gatc where 

*, , .A    Based on the molecular perspective, a solution contains 

multiple copies of dsDNA where its 180o degree rotation is also 

considered which indicates the presence of string  , ,     also in 
*.A

Other than that, the left and right context of the set of rules are 

represented as 1 which explain their null form. This shows the cutting 

process occur within the restriction site, gatc which starts at g and ends 

after the alphabet c on the DNA molecule.  

The following splicing language is generated from the splicing 

system: 
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Based on the definition of the second order limit language, 

   2L S L S  since    1L S L S thus    1 2 .L S L S Hence, 

by further splicing the set of strings of  ,L S the second order limit 

language is presented in the following general form: 
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In the next section, a restriction enzyme called diplococcus 

pneumonia, DpnII is represented as a set of rules and a set of initial 

dsDNA molecules is chosen from the amplified bacteriophage lambda 

that contains exactly two restriction sites, gatc of DpnII is represented 

as a set of initial strings. In additions, the procedures of conducting the 

experiment are discussed in detail. 
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THE WET MODEL 

In this experiment, an initial strand of dsDNA was chosen from 

lambda phage DNA (New England Biolabs, USA).  

Fragment 1 of this lambda phage DNA is the fragment of interest 

for the initial string I since it contains two times the site for the 

restriction enzyme DpnII. The length of the fragment is given as 

follows. 

Fragment 1: II site II siteA Dpn B Dpn D   

A  68bp 

IIDpn  4bp 

B  38bp 

IIDpn  4bp 

D  40bp. 

The genome location for the strand 

 II site II siteA Dpn B Dpn D    is between 5396 and 5549 which 

gives 154 base pairs (bp) long. This strand has exactly two cutting sites 

of restriction enzyme DpnII. Therefore, the strand is denoted as 

.A B D 

Polymerase chain reaction (PCR) can generate thousands of copies 

of DNA molecules.The strand was generated by PCR using 

MyCycler™ Thermal Cycler (Bio-Rad). OneTaq® Hot Start 2X Master 

Mix (New England Biolabs, USA) with standard buffer was used for 

A B D  strand. The PCR recipe of A B D  strand is 4 μl of 

lambda DNA (10 ng/μl), 1 μl of forward and reverse primer with 

concentration 10 μM, 25 μl of OneTaq® Hot Start 2X Master Mix and 

nuclease-free water to obtain 50 μl total volume of the reaction mixture. 

The forward and reverse primers were designed using Primer3 

Input [15] at Primer3 website version 4.0.0. 

(http://bioinfo.ut.ee/primer3/). Full Enterobacteria lambda phage DNA 

sequence (NCBI reference sequence NC_001416.1) was used as 

template to design the forward and reverse primers. The primer sites 

were chosen such that they flank the desired restriction site, assisted by 

the software Primer3. The forward primer site correspond to nucleotide 

no. 5396-5414 of the lambda phage sequence, and the reverse primer 

site correspond to nucleotide no. 5532-5549. The two restriction sites 

chosen are located at nucleotide no. 5464-5467 and 5506-5509. The 

melting point of each primers and the annealing temperature suitable 

for both primers were obtained from Tm Calculator version 1.7.2, New 

England Biolabs website (http://tmcalculator.neb.com). 

The A – B – D strand was amplified with the forward and reverse 

primers as shown in Table 1. Prior to 35 cycles of the program, the 

DNA was denatured for 30 seconds at 94oC. The temperature program 

was as follows: 30 seconds at 94oC, 40 seconds at 58oC, 30 seconds at 

72oC. The final elongation step was at 72oC for 5 minutes before being 

stored at 4oC. 

Restriction enzyme digestion and ligation with time-sequence 

sampling is the final step before running the aliquoted reaction mixture 

on 12% polyacrylamide gel electrophoresis (PAGE). The recipe of the 

time sequence reaction of restriction enzymes digestion and ligations in 

the five wells (Lane 3 to Lane 7) of agarose gel is 60 μL of purified 

lambda DNA, 10 μL of T4 DNA ligase buffer, 4 μL of concentrated T4 

DNA ligase, 5 μL of DpnII and nuclease-free water to obtain 100 μL 

total volume of the reaction mixture. 

The time interval for time-sequence sampling was conducted, 

where aliquots 20 μL each was taken out from the micro centrifuge tube 

incubated at 37 ºC. Each aliquots for reaction tube at 0, 15, 30 and 60 

minutes were stored immediately at -20 ºC to stop the reaction. 

RESULTS AND DISCUSSION 

In this experiment, a few assumptions were made such that the 

initial strand I and the restriction enzyme were of the same amount. In 

addition, the probabilities of digestion and ligation efficiency are 

assumed to be equal. By following all procedures, the solution was then 

subjected to 12% polyacrylamide gel electrophoresis (PAGE) for 90 

minutes. On the other hand, Gangaraj et al. [16] used molecular genetic 

in identifying milk protein genotypes where the method involves 

polymerase chain reaction and the solution is subjected to the 

polyacrylamide gel electrophoresis to observe the pattern of kappa-

caseine gene in buffaloes. Hence, the predicted gel is presented in 

Figure 1 below. 

Fig. 1 Predicted gel of DpnII digestion and ligation towards I. Lane 1: 

LMW Ladder, Lane 2: Lambda DNA     (purified), Lane 3: the 

time sequence reaction mixture at t = 0 minutes, Lane 4: the time 
sequence reaction mixture at t = 15 minutes, Lane 5: the time sequence 
reaction mixture at t = 30 minutes and Lane 6: the time sequence reaction 
mixture at t = 60 minutes. 

The first lane shows the existence of eleven bands of LMW DNA 

ladder that behave as DNA Marker represented by single lines 

according to their molecular weights 25, 50, 75, 100, 150, 200, 250, 

300, 350, 500 and 766bp respectively. In Lane 2, one line exists 

between 150 and 200bp due to the existence of initial strand of dsDNA, 

I which is the value of .A B D  Note that, A B D  is equal to 

154bp. In Lane 3, the initial strand I and the sticky ends of A, B and D 

exist. In Lane 4 to Lane 6, the lines that appear are summarized in the 

following table. 

Table 1 The size (bp) of predicted molecules. 

No. Molecule Size (bp) 

1. A 68 

2. B 42 

3. D 44 

4. A B D  154 

5. A D 112 

6. A A 140 

7. D D  84 

8. A B A  182 

9. D B D   126 

10. A B D  154 

11. A B B D   196 

12. A B B A    224 

13. A B B D   196 

14. A B B A    224 

15. D B B D    168 

16. D B B D    168 

http://www.foxitsoftware.com/shopping


Ahmad et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 14, No. 1 (2018) 15-19  

18 

In Figure 2, extra bands appear in Lane 4 – Lane 6 as compared to 

Figure 1. In consequence, those bands represent the second order limit 

language in Y-G splicing system. 

Fig. 2 Predicted gel of the second order limit language. 

PAGE gel was stained with EtBr and visualized using a UV 

transilluminator. Figure 3 shows the second order limit language 

observed experimentally. 

Fig. 3 Gel photo with the splicing pattern of enzyme DpnII. Lane 1: LMW 

Ladder, Lane 2: Lambda DNA     (purified), Lane 3: the time 

sequence reaction mixture at t = 0 minutes, Lane 4: the time sequence 
reaction mixture at t = 15 minutes, Lane 5: the time sequence reaction 
mixture at t = 30 minutes and Lane 6: the time sequence reaction mixture 
at t  = 60 minutes. 

In Lane 2 of Figure 3, a single band appeared between 150 and 200 

bp, indicating the initial strand of dsDNA that is 154 bp. Lane 3, there 

are no distinct bands appearing probably due to the molecules are at 

their intermediate states, due to the dynamics of DpnII digestion. In 

Lane 4, several bands appeared ranging from 42 bp to 766 bp (and 

larger) indicating the successful ligation of 42, 44, 68 bp products (and 

other larger products) by T4 DNA ligase. The appearances of some 

bands in Figure 2 in Line 5 and Line 6 in addition to those in Figure 1, 

which are on the same lanes, show the existence of a second order limit 

language in the Y-G splicing system. Across the lane, the bands are 

similar as compared to Lane 4 except that the bands below and above 

150 bp became more intense. This is due to the overlapping of other 

bands where the difference from one band to another is close. The 42 

bp, 44 bp and 68 bp molecules with sticky ends are not considered to 

be in the splicing language since they are not well-formed dsDNA 

molecules. Therefore, the complete DNA strands produced in this 

process are the same as we anticipated in Figure 2. 

CONCLUSION 

In conclusion, it was shown that the second order limit language is 

proven to exist through an experiment. The action of cutting and pasting 

was predicted to result in a splicing system which would converge to a 

particular set of the second order limit language with the presence of 

enzyme DpnII. It has been correctly predicted from the splicing system 

in its wet-lab procedure that as time increases, the visibility of the initial 

strings decreases, while the second order limit language increases. 

Figure 1 shows the prediction of the bands which represent dsDNA 

molecules that are produced when the digestion and ligation of DpnII 

took place. Figure 2 then shows the extra bands other than the bands in 

Figure 1 that indicate the existence of the second order limit language. 

It can be concluded that the mathematical model of the second order 

limit language has been verified experimentally since the dsDNA 

molecules produced in the experiment are as predicted in the model.  
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