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Abstract 

This paper focuses on the application of backstepping control scheme for fractional order partial 

differential equations (FPDEs) of order  with 1 2  . Therefore to obtain highly accurate 

approximations for this derivative is of great importance. Here the discretised approach for the space 

variable is used to transform the FPDEs into a system of differential equations. These 
approximations arise mainly from the Caputo definition and the Grünwald-Letnikov definition. A 
Lyapunov function is defined at each stage and the negativity of an overall Lyapunov function is 

ensured by proper selection of the control law. Illustrative example is given to demonstrate the 
effectiveness of the proposed control scheme. 
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INTRODUCTION 

The concept of fractional derivative dates back to the 17th century 
[1–3]. The fractional-order operators now serve as excellent tools for 
the mathematical modelling of real world problems [4]. The fractional 
order differential equations as ordinary and partial cases has been 

involved in a wide range of real life problems, such as the applications 
in fluid dynamics, biology, viscoelasticity, physics and engineering. 
Therefore, the solution of these fractional order differential equations 
of physical interest has gain a huge amount of attention. [5-9]. 

The concept of fractional calculus has interacted with the control 
community deeply during the last few decades. That interaction is 
based on two major factors, the first is that we cannot describe many 
of engineering plants and processes without involving the fractional 

order calculus [10,11]. In addition, the fractional order controller is 
proved to be given a more freedom in the design. The concept of 
fractional order systems has been perfectly covered and there are a 
very large range of applications and their outcomes have been 
obtained [12,13]. For more details one can find some excellent 
references in [11,13,14]. 

The backstepping control is one category of control approaches 
that has gain a considerable attention in the case of controlling 

parametric nonlinear strict feedback systems. It is based control 
approach which is a recursive design technique that breaks down the 
control design for the full system into a sequence of lower-order 
subsystems [15,16]. Backstepping is unlike any of the methods 
previously developed in literatures for controlling ordinary differential 
equations (ODEs) and partial differential equations (PDEs). It differs 
from optimal control methods in that it sacrifices optimality (though it 
can achieve a form of “inverse optimality”) for the sake of avoiding 

the operator of Riccati equations, which are very hard to solve for 

infinite or high dimensional systems, such as PDEs. Backstepping is 
also different from pole placement methods, because even though its 
objective is the stabilisation of the system, which is also the same 
objective of the pole placement methods. In addition, backstepping 
does not pursue precise assignment of even a finite subset of the 
PDE’s eigenvalues [17]. The scheme of the backstepping control is 

basically a recursive controller that uses virtual controls (which are a 
set of intermediate variables), constructed the Lyapunov function 
from the total closed-loop control system. The backstepping technique 
in the integer order has been extensively studied because of the huge 
advantages the technique gives, such as global stability, good tracking 
and transient performance. However, it is been very few research in 
the literature that is succeeded to apply the backstepping method on 
the case of the fractional order system. For instance, for the first time, 

Efe [18] has tried to extend the backstepping technique to fractional 
order systems. Next, Sahab [19] has implemented a generalization 
backstepping method in order to approximate a solution of the 
fractional order error differential equation with respect to two new 
fractional order hyperchaotic system. In [20], the author has used the 
backstepping method to describe and design a controller for a 
fractional order chaotic system control issue.  

Recently we proposed the backstepping method for stabilising 

time fractional order PDE. The semi-discretised fractional-order 
backstepping approach introduced to find the boundary controller 
function which stabilises the time fractional order PDE by 
transformation it into an equivalent stable closed loop [21]. In this 
paper a discretised backstepping approach will be introduced to find 
the boundary controller function which stabilises the nonlinear PDE
with space fractional derivative by transformation it into an equivalent 
stable closed loop. We describe and compare two approximations of 
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fractional derivative namely Caputo definition and Grünwald-

Letnikov definition. 
The rest of this paper is organised as follows: Some definitions for 

fractional order calculus are listed in Section two. In Section three we 
illustrate the backstepping approach to stabilise FPDE based on 
Lyapunov function. Finally, Section four provides an example and the 
result is illustrated and compared using two types of approximation 
for fractional derivative. The conclusions are devoted in the last 
section. 

FRACTIONAL DERIVATIVES 
In this section, we introduce definitions of fractional derivative 

which are used further in this paper. 
Definition 1 [ 22]: The Caputo space-fractional derivative operator of 

order 0  is defined as 
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BACKSTEPPING METHOD FOR FPDE 
Consider the following nonlinear fractional order parabolic partial 

differential equation 
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where the fractional order  belong to (1,2] , 2( ),s L 
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The boundary condition at 0x  is homogenous Dirichlet 

(0, ) 0, 0,s t t                                                                                 (5) 

and the boundary condition at other end 

(1, ) ( ),s t U t                                                                                      (6) 

where ( ) : [0,1]U t C R is the unknown nonlinear feedback control 

function to be design to achieve stabilisation. 
We propose the bakstepping technique to stabilise the system (3)-

(6). A recursive design with Caputo derivative definition for 

discretising 
( , )s x t

x
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is provided in case1 while the shifted Grünwald- 

Letnikov approximation is provided in case 2. In these two cases the 
backstepping design technique is applied to obtain the boundary 

control function ( ).U t

Case1: Backstepping technique with Caputo approximation 
for FPDE 

The design procedure is divided into three stages as follows. 

In the first stage, the nonlinear fractional parabolic partial 
differential equation in Eq. (3) will be semi-discretised into an 
equivalent nonlinear system of differential equations as follows: 

Fix     and   
 

   
 as the step size of discretisation of system 

(3)-(6) over the interval of the space variable (0,1)x . Also, let 
( ) ( , )is t s ih t for all 0,1, , 1i n  where it is assumed that 0( )s t is 

the first boundary condition and 1( )ns t is the control function to be 

evaluated, such that the original system is asymptotically stable. The 
semi-discretisng version of system (3)-(6)  using the Caputo 
derivative definition is 
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In the second stage we will design the need controller according 

the idea of backstepping. The backstepping design procedure requires 

n steps, and the virtual control
i and the controller U will be 

constructed. The design procedure is elaborated in the following 
theorem. 

Theorem 1. Consider the system (10) with order 
1 2  and
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be designed as 
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where 1, , 0nk k  are constants, 2 2

, ( ) ( 1) .i j i j i j       

proof.  By the use of recursion, we havet he following steps; 
Step1: We start with the first equation in system (10). Design a 

suitable stabilising function 1 to stabilise 1( ).w t Select the Lyapunov 

function as 

2

1 1 .
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Then the derivative of  1v is given by 
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The virtual control law 1 is designed as 
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Based on LaSalle invariance principle, if 2 0w  , then 1w is 

guaranteed to converge to zero asymptotically. 
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where 2 0,k  is the design parameter, then the resulting derivative of 
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If we choose i as given in Eq. (13), 1iw  is governed to zero. Then the 

resulting derivative of iv is 
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At this point one can conclude that iw converge to zero 

asymptotically. 
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One control can chosen by Eq. (12). So we have 
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Consequently, 
nw is guaranteed to converge to zero asymptotically. 

In the third stage substitute ( )U t evaluated by Eq. (12) back into 

system (10), for i n , a system of n nonlinear differential equations 

is obtained. The resulting system may be solved by using any method 
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we will design the need controller according to the idea of 
backstepping in the following theorem. 
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2w is to be governed to zero. Then,  2

1 1 1 1 2 1, 0v k w w w k                             

Step 2: consider the Lyapunov function 2

2 1 2
2

h
v v w



  , and its 

derivative given by 
2 2 ( ) ( )

2 1 1 2 2 2 3 2 2 1 2 2 1 2 2 1

1 1
2

1

(

( ) ),

v k w k w w w w w k w s s

s
h f s h

s t

 

 

  



         

 


 

   (34) 

If the virtual control law 
2 is designed as; 

( ) ( ) 1 1
2 1 2 2 1 2 2 1 2

1

( ( ) ),
s

w k w s s h f s h
s t

    
  

 
      

 
          (35) 

3w is to be governed to zero. Then,
2

2

2

1

,i i

i

v k w


  where

0, 1,2ik i  are the design parameters.  

Step i ( 3, , 1i n  ) Study the ith equation of Eq.(29) with the 

virtual control variable 
i . The control Lyapunov function is chosen 

as 2

1 ,
2

i i i

h
v v w



  Its time derivative is given by; 

2 ( )

1 1 1

1 1

1
1

1

(

( ) ).

i i

i j j i i i i i i i j i j

j j

i
ji

i

j j

v k w w w w k w w s

s
h f s h

s t



 

 



   

 






       




 

 


           (36) 

If we choose 
i as given in Eq. (31),

1iw 
is governed to zero. Then 

we have 

2

1

1

i

i j j i i

j

v k w w w 



                                                                        (37) 

Step n: In the last step n, the actual control U appears and is at our 
disposal. The aim is that design a suitable control law to make 

0nw  as t  , select the Lyapunov function as 

2

1 ,
2

n n n

h
v v w



  then we can obtain the time derivative as; 

2 ( )

1 1

1 1

1
1

1

( ( )

).

n n

n j j n n n n j n j n

j j

n
jn

j j

v k w w U k w w s h f s

s
h

s t

 







  

 






      




 

 


        (38) 

The controller can be chosen by Eq. (30). Then, the resulting time 

derivative of nv is 

2

1

,
n

n i i

i

v k w


                                                                                  (39) 

The closed loop system is asymptotically stable. 

Finally substitute ( )U t evaluated by Eq. (30) back into system 

(29), for i n , a system of n nonlinear differential equations is 

obtained.  

ILLUSTRATIVE EXAMPLE 

In this section, one example is presented to illustrate and compare 
the obtained controller by using Caputo and Grünwald-Letnikov
approximations. 

Consider the following nonlinear fractional order partial 
differential equation 

2( , ) ( , )
5 ( , ), 0 1, 0, 1 2,

s x t s x t
s x t x t

t x






 
      

 
              (40) 

( ,0) 7.5 (1 ),s x x x                                                                      (41) 

(0, ) 0, (1, ) ( ).s t s t U t                                                                 (42) 

The result of the simulation of the system (40)-(42) without control 

(i.e. (1, ) ( ) 0s t U t  ) is unstable and presented in Fig.1. The system 

was discretised using a Caputo fractional derivative approximation for 

the space variable with fractional order 1.75  and step size 

0.1667.h 

Fig. 1  Solution of system (40)-(42) with out control 

Using the Caputo derivative semi-discretisation for the space variable 
will give; 
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s

s


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2

1 5
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5
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s s

   


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
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                                                                                                          (43)
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In the simulation the design parameters are set as follows; 

1 2 3 4 52, 1, 3, 1, 4k k k k k     . The fractional order 1.75  . 
The nonlinear controller function can be design as follows: 

5 6 4 4 3 2 3

1 1 1 2 1 1 2 1 2

3 3 2 3 2 2 2

1 3 1 1 2 1 2 1 2 3

2 2 2 2 2 2

1 2 1 3 1 3 1 4 1

4 3

1 2 1 2

0.813s 0.0393s 0.399s s 5.701s 0.099s s 5.599s s

0.506s s 15.051s 0.039s s 0.028s s 0.203s s s

22.714s s 0.101s s 5.089s s 0.514s s 11.294s

0.019s s 0.202s s 0

U     

     

    

  2 2 2

1 2 3 1 2 1 2 3

3 2

1 2 3 1 2 4 1 2 1 3 1 3

2

1 3 4 1 3 1 4 1 4 1 5

5 4 3 3

1 2 2 2 3 2 2

.135s s s 5.435s s 0.034s s s

1.239s s s 0.171s s s 22.757s s 0.034s s 0.514s s

0.171s s s 11.897s s 0.086s s 2.667s s 0.435s s

3.404s 0.039s 0.161s 0.338s s 0.505s 0.084s

  

    

    

     2 2

3

2 2 2 3 2

2 3 2 4 2 2 3 2 3

2

2 3 4 2 3 2 4 2 4 2 5 2

4 3 2 2 2

3 3 3 4 3 3 4 3 4

3 5 3

s

0.182s s 0.428s s 12.186s 0.034s s 1.007s s

0.171s s s 6.193s s 0.086s s 1.786s s 0.435s s 11.499s

0.051s 0.135s 0.343s s 2.027s 0.086s s 1.798s s

0.435s s 12.455s 0

     

    

     

   3 2

4 4 4 5 4

2

5 5

.086s 0.913s 0.435s s 9.148s

0.217s 4.486s (44)

   



Fig.2 shows the state response of the closed loop system consisting of 

(43) and (44) which is obtained by using the Caputo derivative 

discretisation for the space variable with 1.75  for the time step 

size 0.01 and initial condition
1 2 3 4 5( (0), (0), (0), (0), (0))s s s s s 

(1.042, 1.667, 1.85 1.667, 1.042) which clearly demonstrates the 

asymptotic stability of the closed loop nonlinear system.  

Fig. 2 The solution of
1 2 3 4 5, , , ,ands s s s s of system (43) with 1.75 

Fig. 3 The controller ( )U t of  Eq.(44) 

Fig.3 provided the needed controlled function ( )U t which is given be 

the expression (44) that corresponded to Fig.2. From it, one can 

conclude that the control input tends to stable in a small range around 

zero and it shows that the control input was smooth. Fig.4 shows a 

closed-loop response of the system (43) which is equivalent to the 

solution of the FPDE system (40), (42) with Caputo space-fractional 

derivative as the evolution of the state for initial data 

( ,0) 7.5 (1 ),s x x x  and fractional order 1.75  . The stabilisation 

of the unstable FPDE system is well provided in the simulations. 

Fig. 4 Closed-loop response with controller by using Caputo  

approximation when 1.75 

Now,we will stabilise Eq. (40) by using the shifted Grünwald-

Letnikov formula for discretising the space variable, obtaining 

( )
21 1

2 1 1

( ) ( )
22 1 2

3 2 1 2
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23 1 2 3

4 3 2 1 3
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s s s

ds
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The feedback control law can be designed as; 

5 6 4 4 3 2

1 1 1 2 1 1 2

3 3 3 2 3 2 2

1 2 1 3 1 1 2 1 2

2 2 2 2 2 2

1 2 3 1 2 1 3 1 3 1 4

2 4 3

1 1 2 1 2

0.571s 0.0528s 0.486s s 1.949s 0.121s s

3.203s s 0.559s s 1.411s 0.049s s 0.722s s

0.223s s s 5.624s s 0.112s s 1.927s s 0.514s s

0.891s 0.024s s 0.486s s 0.1

U      

   

    
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1 2 3 1 2 3 1 2 4 1 2 1 3
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2

2 3

49s s s 3.143s s

0.037s s s 2.435s s s 0.171s s s 2.911s s 0.037s s

0.102s s 0.171s s s 2.313s s 0.086s s 0.333s s

0.394s s 5.898s 0.0486s 0.061s 0.372s s 0.635s

0.093s s



    

     

    
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Fig. 5 shows the numerical solution of the closed loop system 

consisting of (45) and (46) which is obtained by using the Grünwald-
Letnikov space fractional derivative approximation with fractional 

order 1.75  . The time step size is 0.01 and initial value of system is 

taken as
0 [1.042,1.667,1.85,1.667,1.042]s  .  Fig.6. presented 

the feedback control law (46) which is designed by using the shifted 

Grünwald-Letnikov formula with designed parameters 

1 2 3 4 52, 1, 3, 1, 4k k k k k     and fractional order 1.75.  As Fig. 5 

confirms, that the controller (46) was able to stabilise the nonlinear 
system (45). Fig. 6 shows that the control input was smooth. 

Fig. 5 The solution of
1 2 3 4 5, , , ,ands s s s s of system (45) with 1.75 

Fig. 6 The controller ( )U t of  Eq.(46) 

Fig. 7 Closed-loop response with controller by using Grünwald–

Letnikov approximation when 1.75 

Fig.7 shows the performance of controller in regulation of the system 

state (45) which is equivalent to the solution of the FPDE system (40), 

(42) with Grünwald-Letnikov space-fractional derivative as the 

evolution of the state for initial condition (41) and fractional order 

1.75. Simulation demonstrates the effectiveness of the proposed 

method. 

CONCLUSION 

In this paper, the discretised backstepping technique for FPDEs 
with two types of fractional derivative (Caputo and Grünwald–
Letnikov) definitions has been proposed. With this technique an 
effective boundary controller can be designed for FPDEs with order

1 2  . The design procedures consist of three stages are 

constructed such that the boundary controller can always be 

constructed with appropriate choices of some design parameters.  The 
analytical forms of control law by using two types of fractional 
derivatives are presented. Through simulation it has been established 
that our result are in excellent agreement for two types of fractional 
derivatives, where the result obtained by using Caputo approximation 
performs better, but the symbolic calculation of the virtual control 
becomes demanding computationally for increasing values of n and it 
is depending on the complexity of the nonlinear function. 

For future work, one can assume more applications of the 
proposed procedure for other types of FPDEs, such as fractional 
hyperbolic and fractional elliptic partial differential equations. 
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