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Abstract 

We establish relations between the Khatri-Rao sum of Hilbert space operators and ordinary products, 
powers, ordinary inverses, and Moore-Penrose inverses in terms of inequalities, including arithmetic-
geometric mean inequality and Kantorovich type inequalities. In particular, such relations hold for the 
tensor sum of operators and the Khatri-Rao sum of complex matrices. 
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INTRODUCTION 

In mathematics, there are many kinds of matrix products/sums 

which have rich theory and numerous applications. Such matrix 

products include the Kronecker (tensor) product, the Tracy-Singh 

product, and the Khatri-Rao product. Recall that the Kronecker 

product of two complex matrices A  and B  is defined by 

ˆ = ,ij ij
A B a B                (1) 

that is, the (i,j)th block of ˆA B is given by aijB. The Kronecker sum 

of an n x n matrix A and an m x m matrix B is defined as 

      ˆ .n mA B A I I B                 (2) 

Here, Ik denotes the identity matrix of size k x k for any natural

number k. The Tracy-Singh product, introduced in [1], is a 

generalization of the Kronecker product. Indeed, partition A = [Aij] 

and B = [Bkl], where the submatrices Aij and Bkl can be of arbitrary 

sizes.  Then the Tracy-Singh product of A and B is defined as  

ˆ ˆ= .ij kl
kl ij

A B A B  
  

                          

If A and B have the same form of partitioning, we can define their 

Khatri-Rao product by [2] 

ˆ ˆ= .ij ij
ij

A B A B 
 

See more information about theory of matrix products in [3-6]. 

The notions of Tracy-Singh sum and Khatri-Rao sum for matrices

are respectively defined by (see [7]) 

ˆ ˆ ˆ= ,n mA B A I I B                          (3) 

ˆ ˆˆ = .n mA B A I I B                 (4) 

Here, we partition mI and nI so that their diagonal blocks are identity 

matrices. If A and B are of only one block, then the Tracy-Singh sum 

(3) and the Khatri-Rao sum (4) are reduced to the Kronecker sum (2). 

A significant development in operator theory is to introduce the 

tensor product of Hilbert space operators, generalizing the Kronecker

product of matrices. From now on, let  and  be complex 

separable Hilbert spaces. When  and  are Hilbert spaces, denote 

by ( , ) the algebra of bounded linear operators from  into , 

and abbreviate ( , ) to
 

( ). The identity operator on the space 

is denoted by IX or I if the underlying space is clear from the 

context.   Using the universal mapping property, the tensor product of 

( )A and ( )B is the unique bounded linear operator from 

the tensor space  into itself satisfying  

( )( )=A B x y Ax By  

             

for all x and
 

y . The tensor sum of ( )A and 

( )B is defined to be (see [8]) 

      
.A B A I I B                 (5) 

Recently, the Tracy-Singh product, the Khatri-Rao product, and the 

Khatri-Rao sum for Hilbert space operators were investigated by the 

authors [9-13]. The notion of Khatri-Rao sum of operators includes 

the tensor sum of operators and the Khatri-Rao sum of complex 

matrices as special cases. 

In this paper, we develop further theory of operator products/sums 

by establishing certain inequalities for Khatri-Rao sums of operators. 

These inequalities involve ordinary products and powers, ordinary and 
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Moore-Penrose inverses. We also deduce Kantorovich type 

inequalities concerning Khatri-Rao sums. Our results generalize some 

matrix inequalities in [7]. In operator case, we require some mild 

assumptions such as the closeness of their ranges. Moreover, new 

operator inequalities are established by means of block partitioning 

technique.  

The paper is organized as follows. The next section supplies 

preliminaries on Tracy-Singh products/sums and Khatri-Rao 

products/sums for Hilbert space operators.  The third section deals 

with certain operator inequalities concerning Khatri-Rao sums and 

Moore-Penrose inverses. In the final section, we establish 

Kantorovich type operator inequalities involving Khatri-Rao sums. 

PRELIMINARIES 

For Hermitian operators , ( ),A B the partial order A B

means that A B is a positive operator. 

Tracy-Singh products/sums for operators 
To define the Tracy-Sing product of operators, we first fix the 

decompositions of Hilbert spaces (this can be done by using the

projection theorem):  

=1 =1

= , =
m n

i k
i k
 

where  i and k are Hilbert spaces for all i, k. It follows that any 

operator ( )A and ( )B can be uniquely represented as 

operator matrices  

,

, =1
=

m m

ij i j
A A   and  

,

, =1
=

n n

kl k l
B B

where
 

( , )ij j iA  and ( , )kl l kB  for each , , , .i j k l Basic 

algebraic operations for operator matrices, such as, the addition, the 

scalar multiplication, the usual multiplication, and the adjoints can be 

performed in the same way as those of block matrices. 

Definition 1. According to the previous setup, the Tracy-Singh 

product of A and B is defined to be the bounded linear operator 

from 
,

, =1

m n

i ki k
 into itself, represented by the operator matrix

= .ij kl kl ij
A B A B    

            (6) 

Recall that a Moore-Penrose inverse of ( , )A is an 

operator † ( , )A  satisfying the following conditions (see [14]): 

† † † † † * † † * †= , , ( ) , ( ) .AA A A A AA A AA AA A A A A  

The existence of †A is equivalent to the closeness of the range of A, 

and in this case  the operator †A is unique (see, e.g., [15]). 

Lemma 2 ([9]).  The Tracy-Singh product fulfills the following 

properties, assuming that all operators are compatible:  

* * *( ) = ,A B A B                          (7) 

( ) = ( )= ( ),A B A B A B                           (8) 

( ) = ,A B C A B A C                           (9) 

( ) = ,B C A B A C A                       (10) 

( )( ) = ,A B C D AC BD                      (11) 

† † †( ) = .A B A B                    (12) 

Lemma 3 ([9]).  Let ( )A and ( )B be operator matrices. 

If 0A and 0,B then 0A B .  

Definition 4. Let 
,

, =1
= ( )

m m

ij i j
A A    and  

,

, =1
( )

n n

kl k l
B B  . We 

define the Tracy-Singh sum of A and B as follows:  

=A B A I I B           (13) 

which belongs to  ,

, =1

m n

i ji j
 .  

Khatri-Rao Products/Sums for Operators  
From now on, fix the following Hilbert space direct sums:  

=1 =1

= , = .
n n

i i
i i
 

Definition 5.  Let 
,

, =1
= ( )

n n

ij i j
A A    and 

,

, =1
= ( )

n n

ij i j
B B    be 

operator matrices. We define the Khatri-Rao product of A and B to 

be the bounded linear operator from 
=1

n

i ii
   into itself, 

represented as follows:   

,

, =1
= .

n n

ij ij i j
A B A B             (14) 

Lemma 6 ([11]). There is an isometry Z such that *ZZ I and 

 *=A B Z A B Z           (15) 

for any ( )A and ( )B . We call Z the selection operator 

associated with the ordered tuple  , . 

Definition 7.  Let ( )A and ( )B . We define the Khatri-

Rao sum of A and B as follows:  

=A B A I I B                          (16) 

which belongs to  =1

n

i ii
 .  

Note that if both A and B are 1 1 block operator matrices, their 

Khatri-Rao sum A B becomes the tensor sum. If = = ,i i the 

Khatri-Rao sum A B reduces to the Hadamard sum of complex 

matrices (see e.g. [7]).  

Lemma 8 ([13]). There is an isometry Z such that *ZZ I and  

 *=A B Z A B Z                                           (17) 

for any ( )A and ( )B .  

OPERATOR INEQUALITIES INVOLVING KHATRI-RAO 
SUMS  AND MOORE-PENROSE INVERSES  

In this section, we derive certain operator inequalities involving 

Khatri-Rao sums and Moore-Penrose inverses. Roughly speaking, we 

may consider the Khatri-Rao sum and the Khatri-Rao product as the 

“sum” and the “product”, respectively. The Moore-Penrose inverse 

plays a role like the “inverse” for operators. To ensure the existence of 
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the Moore-Penrose inverse of an operator, we must impose the 

closeness of its range. The  results in this section include those for the 

tensor sum of operators and the Khatri-Rao sum of complex matrices

as special cases. 

To derive operator inequalities in this section, we apply a block-

partitioning technique, which is explained in the next lemma.  

Lemma 9 (see e.g. [16])  Let 
11 12

*

12 22

=
T T

T
T T

 
 
 

be an operator in 

1 2( ) such that 11T has a closed range. Then 0T if and only 

if   

(i) 11 0T ,   

(ii) †

12 11 11 12=T T T T ,  

(iii) * * †

22 22 12 11 12=T T T T T .  

      Recall that for any positive real numbers a and b, we have 

2( )
2

a b a b

ab b a


  

(indeed, both sides are equal). Let us generalize this fact to operators 

in which we consider the Khatri-Rao sum as the “sum” and the 

Moore-Penrose inverse as the “inverse”. 

Theorem 10. Let ( )A and ( )B be positive invertible 

operators such that A B has a closed range. Then  

    
† 1 1 2 .A B A B A B A B A B I               (18) 

Proof. Denote  

1/2 1/2 1/2 1/2 1/2 1/2=S A B A B A B   

and 
0

=
0

Z
X

Z

 
 
 

where Z is the selection operator associated with 

( , ) . Using Lemma 2, we get  

*0 S S

1 1
=

2

A B A I I B

A I I B A B A B I I 

 
 

    

1 1
= .

2

A B A B

A B A B A B I I 

 
 

   

Pre- and post-multiplying *S S by *X and X , respectively, we obtain  

* *0 X S SX

   

   

* *

* * 1 1
=

2

Z A B Z Z A B Z

Z A B Z Z A B A B I I Z 

 
 
  
 

1 1
= .

2

A B A B

A B A B A B I I 

 
 

   

Applying Lemma 9, we get the inequality (18). 

       

Recall that for any positive real numbers a and b, we have 

2( 1) 1
2

a
a

a a


  

(indeed, both sides are equal). The next theorem generalize this fact to 

operators; it is also an extension of [7, Corollary 3.8]. 

Theorem 11. Let ( )A be a positive operator such that A
and A I have closed ranges, and =A I I A . Then  

    
†† † † †2 .A AA A I A AA A A AA I           (19) 

Proof. Note first that †A and  
†

A I exist due to the assumption 

that A and A I have closed ranges. Now, denote  

1/2 1/2 † 1/2= ( )S A I A I A I   and 
0

=
0

Z
X

Z

 
 
 

where Z is the selection operator. Since = ,A I I A we have, by   

Lemma 2, † †=A I I A and † †= .AA I I AA Then  

*0 S S

†

† † †
=

2

A I A I AA I

A I AA I A I A I AA I

 
 

   

†

† † †
=

2

A I A I I AA

A I I AA A I I A AA I

 
 

   

†

† † †
= .

2

A I A AA

A AA A A AA I

 
 

 

Pre- and post-multiplying by *X and ,X respectively, we obtain  

* *0 X S SX

   

   

* * †

* † * † †
=

2

Z A I Z Z A AA Z

Z A AA Z Z A A AA I Z

 
 
 
 

†

† † †
= .

2

A I A AA

A AA A A AA I

 
 

 

The proof is complete by using Lemma 9.  
      An equivalent form the arithmetic-geometric mean inequality is 

that for any real number 0a  we have  

1
2.a

a
 

The next theorem is a generalization of this fact; it is also an operator 

extension of [7, Corollary 3.6]. 

Theorem 12.  Let ( )A be a positive operator such that A has a 

closed range and † †=A I I A . Then  

† †2 .A A AA I                                                                 

Proof. The Moore-Penrose inverse of A exists since its range is 

closed. Now, denote = 0S A I . The spectral theorem implies 

that † †2 .S S SS We have by using Lemma 2 that  

† †=A A A I A I

†= ( )A I A I

†2( )( )A I A I

†= 2 .AA I
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We get the desire result by pre- and post-multiplying by *Z and ,Z

respectively.  

KANTOROVICH TYPE INEQUALITIES INVOLVING KHATRI-
RAO SUMS 

In this section, Kantorovich type inequalities involving Khatri-

Rao sums are established. We begin with an auxilliary lemma. 

Lemma 13.  Let S be a positive invertible operator in ( ) with 

mI S MI where ,m M are positive constants.  The following 

inequalities hold: 

1( ) ,S m M I mMS                                                            (20) 

2 ( ) .S m M S mMI                                                             (21) 

Proof. Since ,mI S MI we have    0MI S mI S  and 

hence 

     1 1/2 1/2 0MI S mI S S S MI S mI S S      

Now, the desired inequalities follow easily. 

     The next lemma provides certain operator inequalities, 

generalizing matrix results in [17].  

Lemma 14.  Let S be a positive invertible operator in ( ) with 

mI S MI where ,m M are positive constants.  For any 

( , )X  such that * =X X I , we have 

 
 

 
2

2 2
* * 2 * ,

4

M m
X SX X S X X SX

Mm


                           (22) 

 
 

 
2

1 1
* * 1 * .

4

M m
X SX X S X X SX

Mm

 



                        (23) 

Proof. Since * ,X X I we have † *.X X Since †XX is Hermitian 

and idempotent, it is a projection and thus † .XX I Then 

         
2 * ** * * 2 .X SX SX XX SX SX I SX X S X 

It follows from (21) in Lemma 13 that 

* 2 * *( )X S X m M X SX mMXX 

 
 

2 2
2

* *

4 2

m M m M
X SX X SX mM I

mM mM

  
   

 

 
 

2
2

* .
4

m M
X SX

mM



Since  
1

1/2 * *S X X SX X S


is Hermitian and idempotent, it is a 

projection and thus  
1

1/2 * * .S X X SX X S I


It follows from (20) 

that 

* 1 * *( )m M
X S X XX mMXSX

mM

 


 
 

2
1

*

4

m M
X SX

mM




           
2

1/2 1/2
* *1

2

m M
X SX X SX

mM mM

 
  
 

 
 

2
1

* .
4

m M
X SX

mM



      

The next theorem establishs Kantorovich type inequalities 

concerning ordinary powers and inverses of operators. 

Theorem 15.  Let ( )A and ( )B be positive invertible 

operators and mI A I I B MI where ,m M are positive 

constants. Then  

 
 

 
2

2 22 2 .
M m

A B A B A B
Mm


                          (24) 

If  
A B is invertible, then 

 
 

 
2

1 11 1 .
M m

A B A B A B
Mm

  


                     (25) 

Proof. Denote  

0
=

0

A I
S

I B

 
 
 

and 
1

=
2

Z
X

Z

 
 
 

where 

Z is the selection operator associated with ( , ).

Then 

* =X X I . By Lemma 3, 0A I   and 0.I B We have 

0S

by Lemma 14. Since A and B are invertible, we conclude that 

S is 

invertible. Using Lemma 8, we have  

* * *
01

=
02

A I Z
X SX Z Z

I B Z

   
      

   

 *1
=

2
Z A I I B Z  

 *1
=

2
Z A B Z  

 
1

= ,
2

A B

1

* 1 * *

1

01
=

2 0

ZA I
X S X Z Z

ZI B







   
      

  

 * 1 11
=

2
Z A I I B Z  
 

 * 1 11
=

2
Z A B Z  
 

 1 11
= ,

2
A B 

2

* 2 * *

2

01
=

2 0

ZA I
X S X Z Z

ZI B

   
      

  

 * 2 21
=

2
Z A I I B Z 
 

 * 2 21
=

2
Z A B Z 
 

 2 21
= .

2
A B

Substitution in (22) and (23) of Lemma 14 leads to the results. 
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Lemma 16.  Let S be a positive invertible operator in ( ) with 

mI S MI where ,m M are positive constants. For any 

( , )X  such that * =X X I , we have 

* * 1 1 2( ) ( ) ,X SX X S X M m I  
                                   

(26) 

* 2 * 2 21
( ) ( ) ,

4
X S X X SX M m I                                         (27) 

2
* 2 1 / 2 * ( )

( ) .
4( )

M m
X S X X SX I

M m





     

                                  (28) 

Proof. Using (20), we obtain 

* * 1 1( )X SX X S X 

 
1

* 1 * 1( )m M I mMX S X X S X


   

     
22 1 / 2 1 / 2

* 1 * 1M m I mM X S X X S X


     
  

 
2

.M m I

It follows from (21) that 

* 2 * 2( )X S X X SX

 
2

* *( )m M X SX mMI X SX  

   
2

2 *1 1

4 2
M m I X SX m M I

 
     

 

 
21

.
4

M m I

On the other hand, we have from (21) that 

 
1 / 2

* 2 *X S X X SX

 
1 / 2

* 2 21 mM
X S X S I

m M m M
 

 

 
 

22
1 / 2

* 21

4( ) 2

M m m M
I X S X I

m M mM

  
   

   

 
2

.
4 ( )

M m
I

m M





      Our last theorem provides another forms of Kantorovich 

inequality concerning ordinary powers and inverses. 

Theorem 17.  Let ( )A and ( )B be positive invertible 

operators and ( ) ( )mI A I I B MI where ,m M are 

positive constants.  Then  

     
2 22 22 ,A B A B M m I                                      (29) 

   
 

2
1 / 2

2 2 1
.

2 2 2

M m
A B A B I




                               

(30) 

In addition, if  1 1A B  is invertible, then 

     
21

1 11
2 .

2
A B A B M m I


                           (31) 

Proof. The proof can be omiited since it is similar to that of Theorem 

15. Instead of Lemma 14, we apply Lemma 16. 

CONCLUSION 

We provide relations between the Khatri-Rao sum of operators 

and various kinds of operator operations, namely, ordinary products 

and powers, ordinary and Moore-Penrose inverses. These relations 

appear in terms of inequalities, including arithmetic-geometric mean 

inequality and Kantorovich type inequalities. The results involving 

Moore-Penrose inverses are valid under the assumption of closedness 

of certain operators. Our results show that the Khatri-Rao sum and the 

Khatri-Rao product can be regarded as the “sum” and the “product” of 

operators, respectively. 
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