
Lola et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 693-704 

693 

Improvement of estimation based on small number of events per 
variable (EPV) using bootstrap logistics regression model 

Muhamad Safiih Lola a, d,*, Nurul Hila Zainuddin b, Mohd Noor Afiq Ramlee a, d, Muhamad Na’eim 
Abdul Rahman a, Mohd Tajuddin Abdullah c, d  

a 
School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia 

b 
Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia 

c
 School of Marine Science and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 
d
Kenyir Research Institute, Universisti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia 

* Corresponding author: safiihmd@umt.edu.my 

Article history 
Received 14 June 2017
Accepted 15 December 2017 

Abstract 

In this research, a bootstrap approach model is proposed, namely as Bootstrap Logistics Regression 
Model (BLRM) that is specifically used to solve the small events per variable (EPV) problem. 
Considering a sample data from study case of endemic dengue at several localities in Kelantan, 
Malaysia, a simulation study is conducted.  We generated 5, 10, 20 and 25 mean samples with 500 
times replacement, 1500 times bootstrap for each small EPV value (EPV= 2, 3, 4 and 5) according to 
the basic reproduction number, R0 for endemic dengue.  The performance of the propose BLRM 
revealed that the frequency distribution of estimated regression coefficient became less peaked and 
possessed thinner tails; the average percent relative bias consistently decreased and was closed to 
true parameter; the sample variance (MSE and RMSE) of the estimated regression coefficients of 
were smaller than original model 
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INTRODUCTION 

For the past thirty decades, the logistic regression has been widely 
used and received considerable attention from researchers and 
practitioners. This model has been shown to be successful when used 
for studying the relation between response and two or more predictor 
regression models as well as for modeling dichotomous outcomes.  

Specifically, the logistic regression model is usually formulated 
mathematically based on the functional form of a logistic, and 
cumulative density function (cdf) related to the probability of the 
occurrence of a particular event, E, with a conditional on a vector, x,
of explanatory variables, to the vector x. In this paper, we consider the 
logistic regression model which has been used for estimating EPV by 
Peduzzi et al. (1996) and define it as follows: 
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where the conditioning on the deaths, P(Death| Xi)  is given prior 
consideration in dengue case, with the patient of i is noted as variable 
Xi. The K represents the indicator of probability the death (indicator 

K1) and survivor (indicator K2). While, the  is noted as the of 

logistic coefficient for each Xi . 
Directly related to the model in Eq. (1) is number of events per 

variable (EPV). This is very common among researchers as criteria in 
multivariable analysis (see Peduzzi et al. 1985; Peduzzi et al., 1996; 
Gareth et al., 2002; Rahim et al.,2007; and Wynants et al., 2015). An 

ideal minimum EPV value is suggested in the range of 10-20 (Harrel 
et al., 1985). However, the usage of this model in Eq. (1) especially 
when referring to EPV values might cause other serious problems and 
potential misleading associations such as inaccuracy and imprecision 
of the regression coefficient due to small EPV values compared to the 
free variables in the model proposed by Concato et al. (1993). In the 
research by Peduzzi et al. (1985), Peduzzi et al.(1996) and Freedman 

and Pee (1989), it was stated that when the EPV value does not follow 
the expected minimum values set, three types of errors, which are 
over-fitting (Type I error), under-fitting (Type II error) and 
paradoxical fitting (Type III error), would occur. The identification of 
these errors led to the introduction of a general guideline of a 
minimum EPV in multivariable analysis. The study concludes that a 
certain number of EPVs are needed so that the validity of the model 
can be trusted (see for example, Peduzzi et al. 1985; Harrel et 

al.,1985; Concato et al.,1993; Concato et al.,1995; and Peduzzi et al., 
1996).  

However, the parameters estimate of logistic regression model 
revealed that bias occurred in positive and negative directions 
(Peduzzi et al., 1996), especially when EPV values are fewer than 10. 
There are no problems when EPV values are greater than 10. In other 
words, small EPV values (fewer than 10) can lead to major problems 
which are overestimation and underestimation. Additionally, it gives a 

negative impact on the validity and reliability of the logistic 
regression model. 

Thus, to overcome these critical problems and simultaneously 
enhance the capabilities and performance of the LRM, this study 

RESEARCH ARTICLE 

http://www.foxitsoftware.com/shopping


Lola et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 693-704 

694 

proposes a combination of the bootstrap method with a logistic 

regression model, a hybrid coined as the Bootstrap Logistics 
Regression Model (BLRM). The bootstrap method, initiated by Efron 
(1979) is a method in the computer-based nonparametric family 
designed to set the standard accurate measurement of an estimated 
sample. To investigate the effectiveness of the proposed BLRM, we 
used the unbiased and efficient estimator characteristics as applied by 
Arthur (1962), Tao and Narayanaswamy (2008), Muhamad Safiih 
(2013), Muhamad Safiih et al. (2014) and Muhamad Safiih et al. 

(2016). Investigation towards the developed model focuses on 
creating unbiased estimator value and small error value as well as 
shorter interval average compared to the original model. Through this 
proposed model, we constructed a standard error as well as a 
confidence interval of the LRM. For this purpose, we conducted a 
Monte Carlo simulation through R programming using data from 
endemic dengue fever that has had 4 deaths (events) among 320 
patients. For the analysis, the complete data for the variables were 

taken from 15 localities, from which 4 patients died in 2009, thus 
yielding an EPV of (11/3=) 3.67 ≈ 4.00 for the full sample. This 
research used 3 types of variables, producing an EPV of 4/3 = 1.333 
for the full sample. The Monte Carlo simulation was conducted for 
small EPV values i.e., 2, 3, 4 and 5. Finally, the results from the 
proposed model were compared with the original model based on 
bias, precision and significance testing on the regression coefficients. 
To explainmore detailedabout the study, we first introduced theBLRM 

in Section 2. In Section 3, a numerical example that illustrates the 
BLRM and its comparison with LRM will be presented. In this 
section, we used the Monte Carlo simulation study on endemic 
dengue fever data. To measure the effectiveness of the proposed 
model, standard statistical performance criteria such as bias, mean 
square error, root mean square error, and confidence interval were 
also examined. This paper is finished with a conclusion in Section 4. 

METHODOLOGY 

The Bootstrap Logistic Regression Model 
The logistic regression model or LRM is widely applied in 

measuring relationships between two or more predictors. Although 
this type of model is widely used, misclassification estimates can still 
happen (Carroll and Pederson, 1993) and it becomes more challenging 
when a small-sized sample is involved (Peduzzi et al., 1996). The best 
alternative to solve this problem is the bootstrap method, a type of 

nonparametric statistical inference approach which was introduced by 
(Efron, and Tibshirani, 1993). Bootstrapping enhances  the capacity 
and performance of the LRM, as we will show later using our 
developed BLRM. By applying this method, improved standard error 
or confidence interval can be developed. This is because the bigger 
the error value, the further the estimator from the real value and vice 
versa; while the smaller the confidence interval, the better the 
estimator value and vice versa. 

To look at the effectiveness of the BLRM model towards EPV that 

is caused by small data sample size, a Monte Carlo experiment was 

conducted. Using the bootstrap method, estimation for the sample 

distribution could be done to almost all samples. Bootstrap method is 

the sampling from sample replacement, which is done by taking  

random samples from the original sample. Bootstrap sampling 

depends on the sample itself, depending on the number of sources 

possessed. Bootstrap equality principle stated that the estimator for 

sub sampling (bootstrap method) is the same as the sample estimator. 

In addition, other than being a more accurate sample estimator, the 

bootstrap method can measure variability and bias. The bootstrap  

concept can be explained through Fig. 1(a) and Fig. 1(b) which 

represent real data and bootstrap data. Based on Fig. 1(a), we assume 

that probability distribution is unknown, F, gives data obtained as

),...,,( 21 nxxxx  through random sampling, while measurable 

statistic uses x , )(ˆ xs . Fig. 1(b), which is the bootstrap data (in 

this study, we use Freedmen’s term, which is referred to Rahim et al., 

2007, as empirical distribution), F̂ giving bootstrap samples 

),...,,(* **
2

*
1 nxxxx  by random sampling that is measured from 

bootstrap statistic replication, *)(*ˆ xs . The advantage of using 

bootstrap data is that we can calculate as many replications of  *̂ as 

possible. The calculation of F̂ from F is shown by the big white 

colored  arrow. These concepts are an important part in the bootstrap 

process (Efron and Tibshirani, 1993). 

Algorithm of Experimental Study 
The algorithm of the LRM model using the bootstrap approach as 

proposed is based on Fig. 1(a) and Fig. 1(b). The steps are as follows: 

Step 1: Prior to the Monte Carlo simulation, death selection is 
calculated, i.e. j. Three types of variables were present in this 

research, i.e. 3 21  and, xxx with total dengue fever cases, average 

temperature and total number of mosquito breeding respectively. The 

death selection is represented by  EPV3j . Thus, EPV for the full 

sample can be calculated using the equation: 

0.4

3

4
3

Variables Total

Death Total
 Variables Totalsample fullfor  EP V







In conclusion, EPV for the full sample of dengue case study in this 
research is 4.0. 

Step 2: Generate 500 simulations using sampling with replacement, 
where each simulation data uses fixed EPV value of 2, 3, 4, or 5. For 
example, the first 500 generated values used an EPV of 2, and the 
third 500 generated values used an EPV of 4. Fifteen endemic dengue 
fever localities were chosen for simulations.  

Fig. 1 (a) Real data and (b) Bootstrap data 

(a) (b) 
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Step 3: Estimate prediction probability of dying (Pi) using the logistic 

model (LR): 

1)]([
}1{ 


 iX

i eP
(2) 

where  is intercept term; ),,( 321 iiii XXXX  is the set for covariate 

values for patient i; and ),,( 321   is the set of corresponding 

values of the regression coefficients estimated from the full sample 
with EPV = 4 as shown in Step 2. 

Step  4: Calculate the residual model for LR based on ii -Pe death 

Step 5: Selection of cumulative death and survival selection 

probabilities,   },1{ )death()death( ik kj SC and )survival(jC

  },1{ )survival(ik kS respectively.  

Step 6: Generating uniform random numbers, ),...,( 1 iuuu  between 

0 and 1, with death selection, j. This process is repeated until the 
required number 3 x EPV death is obtained: 

EPV 2 EPV 3 EPV 4 EPV 5 

j = 3 x EPV 
= 3 x 2 
= 6 

j = 3 x EPV 
= 3 x 3 
= 9 

j = 3 x EPV 
= 3 x 4 
= 12 

j = 3 x EPV 
= 3 x 5 
= 15 

The selection of death is continued until the required number of 3 x 

EPV death is obtained for every 500 generated simulations.  

Step 7: For every generated data, residual value that is obtained by 
LR model as shown in Step 4 is calculated using the bootstrap 

method. Due to this, a new bootstrap value, )(tB
ie can be obtained, 

where mi ,...,1 refers to the ith time, and Bt ,...,1 . The notation B is 

referred to total bootstrap replication sets, i.e. 1500.  
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Step 8: The estimation obtained in Step 7 is revaluated using Step 4 

formula, thus, a bootstrap data set can be obtained as follows:  
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Step 9:A bootstrap sample, B
ix can be obtained by averaging the each 

column of bootstrap data set in Step 9. 

Step 10: Using the same calculation to estimate the value of 

parameter  using the bootstrap data in Step 9 and MLR model, the 

BMLR hybrid model is subsequently formulated in this step. 

Step 11: Step 5 is repeated using bootstrap data. For Step 6, random 

uniform data was equal. 

Based on these developed algorithms, the Bootstrap Logistic 
Regression Model (BLRM) is now defined as: 
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Statistical Performance 
As mentioned earlier, the problems faced by Peduzzi et al. (1996) 

included overestimation and underestimation of EPV due to small 

sample sizes. To test this, we created a simulation series of small EPV 
values i.e. 2, 3, 4 and 5. In order to see how effective the propose 
model, a comparison of performance with original model is made.  
We used statistical performance criteria to measure the consistence, 
efficiency, accuracy,and predictability of the developed model as 
measured by bias, Mean Square Error (MSE) and confidence interval. 
Without loss of generality of estimation theory, this research considers 
two (2) standard statistics indicators which have been applied before 

by Peduzzi et al. (1996). Firstly, analysis and calculation methods 
were based on analysis and calculation methods used by Peduzzi et al. 
(1996). This includes (i) examining the distribution of the regression 
coefficient and measuring normality test using Kolmogorov Smirnov; 
(ii) assessing the accuracy of coefficients by calculating the average 
percent of relative bias used by Peduzzi et al. (1996), where 

regression coefficient for each of the 3,2,1j and each of the 

Kk ,...,1 simulation that converged is as follows: 
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where true,j is the “true” value of the coefficient obtained from the 

full sample. Additional calculation to calculate accuracy is by the 

proportion of simulations in which the bias exceeded %100 , (iii) 

examining observed coefficient’s accuracy and efficiency through 
sample variance (assumed to be MSE) calculation before comparing 

between  “sample” and “proposed model” for every regression 
coefficient. This is done using the following equation: 
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with this, variance calculation is determined through the average 
variance from the LRM model for every coefficient on every model

K that converged, as shown in the equation below: 

1
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from Eq. (5), we can calculate the Root Mean Square Error (RMSE) 

based on the following equation: 

 
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(7) 

Using bootstrap method, estimation for a sample distribution can 
be done for almost all statistical models. Bootstrap is sampling with 
replacements from sample, which is done by taking random samples 

from the real sample. Bootstrap sampling depends on the sample itself 
following the number of resources that are available. Bootstrap 
equality principle stated that the sub sampling is equal to the sample 
estimator. In addition, bootstrap method can measure variability and 
bias and also give accurate sample estimations.For the assessment of 
the accuracy of coefficients, we followed what was done by Peduzzi 
et al. (1996), i.e. the average percent relative bias through calculations 

for each of the 3,2,1j regression coefficient. Secondly, for the 
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method of evaluation, we used the same statistical significance of the 

regression coefficients. However, we considered only three out of four 
ways for the method of evaluation i.e. confidence intervals are 
determined as the proportion of simulations following the given 
equation: 

)]()1(exp[
2 jj sz   (8) 

where the value of 
2

(1 ) 1.645z   , i.e. 95% CI for )exp( j , and 

)( js  refers to standard error of j . Proportion of simulations is 

defined as the coefficient divided by its standard error, and popularly 
describe as “paradoxical fitting”. 

Data  
In this research, the simulated data concerns endemic dengue 

provided by the Health Department in Kelantan, Malaysia. There are 
15 localities with endemic dengue with a total of 323 dengue fever 

patients between years 2005-2009. The complete data with 3 variables 
were available from the 15 localities. From this sample, 4 died in 
2009, yielding an EPV of (12/3) = 4.00 for the full sample. The 
variables selected for the simulations are total number of dengue cases 

reported in each locality ( 1x ), average temperature ( 2x ) and total 

number of mosquito breeding, )(R 30 x whilst response variable (y) is 

the probability of deaths. Table 1(a) and Table 1(b) summarize the 
results of multivariate logistic model and multivariate bootstrap 
logistic model applied to the full sample.  

Table 1(a) Statististical summary of baseline risk factor in original 
complete group. 

Factor 
Multivariable Logistic Regression Estimates 

Coefficients 
Standard 

error 
Wald  

p-value 
Odds 
ratio 

Intercept 130.679 275.117 0.475 5.6E+56 
Total reported 
case 0.161 0.140 1.151 1.175 

Temperature 0.262 1.929 0.136 1.300 
Reproduction 
basic number -140.362 256.253 -0.508 1.1E-61 

Table 1(b) Statististical summary of baseline risk factor in bootstrap 
complete group. 

Factor 
Multivariable Logistic Regression Estimates 

Coefficients 
Standard 

error 
Wald  

p-value 
Odds 
ratio 

Intercept 70.008 802.008 0.087 2.5E+30 
Total reported 
case 0.064 0.951 0.067 1.066 

Temperature -0.267 0.256 -1.044 0.765 
Reproduction 
basic number -64.176 809.667 -0.079 1.3E-28 

RESULT AND DISCUSSION 
Before discussing on performance of the proposed model 

regarding small EPV values, first step is to examine the departure 
from the normality of the z-statistic distribution. For this, we divided 
our study into three parts; (1) testing the covariance effects under 

0:H0  ; (2) testing the skew; and (3) testing for goodness of fit 

using Kolmogorov Smirnov (K-S) and Shapiro-Wilk (S-W). The parts 
(1), (2) and (3) are shown in Table 2 and Table 3. As mentioned by 
[1], the departures from normality are common especially for small 

EPV ( 10  EPV ). Thus, for LRM, the distributions of variables 1x and 

2x are skewed to the left, while 3x is skewed to the right. However, 

the BLRM was also skewed to the left for 2x . These results are shown 

in Table 2. 

Even though the skewed graphic of BLRM was more towards 

normal, it was also supported via asymptotic significance and test 
distribution, as the bootstrap method used was able to produce a small 
standard deviation. This graphical result can be viewed in Fig. 2. 

The condition of normality distribution for both regression 
coefficients were further investigated using the Kolmogorov Smirnov 
(K-S) as well as the Shapiro-Wilk (S-W). According to normal 
measurement test, K-S and S-W are based on the assumption that the 
data follows a normal distribution if the values obtained for K-S are 

big, and for S-W, small.  
From Table 3, it can be seen that the K-S values were larger than 

the S-W values for both LRM and BLRM. Thus, both tests proved 
that proposed LRM and BLRM adhered to the assumption that the 
data follows a normal distribution of all EPVs. However, BLRM 
values were bigger compared to LRM. This result is also supported by 
Fig. 2, where “peaked” distribution and thinner “tails” in both 
directions were more common at bootstrap regression coefficient as 

EPV decreased. Although bootstrap distribution showed one negative 
skewed pattern for both regression coefficient x1 and x2 for all EPV, 
the Kolmogorov test indicated that the data used was still approximate 
to normal distribution. 

The best estimation i.e. the consistency and efficiency between 
BLRM and LRM especially when involving small EPV values are the 
primary focus in this study. Before discussing this condition in detail, 
we should first look into the effect of EPV on the frequency 

distribution for both models. This is done by comparisons of EPV 
frequency distribution of the values of the regression coefficient for 
variables from both proposed and original models. The total dengue 
cases recorded in each locality is depicted in Fig. 3. From Fig. 3(a), it 
is revealed that the smaller the EPV values (from EPV=5 to EPV=2), 
the more the frequency distributions of estimated regression 
coefficient are concentrated to normal distribution with mean = 0 
(Nornadiah and Yap, 2011; Efron and Tibshirani, 1993). 

In other words, as EPV decreased, the distribution became 

“flatter”, particularly for LRM distribution, while BLRM became less 
peaked and has thinner tails. For example, in Table 4, which shows a 
single EPV number (e.g. 2), the minimum and maximum values of the 
bootstrap regression coefficient were -0.03 and 0.026 respectively, 
compared with -0.291 and -0.004 for the LRM coefficient. The 
standard deviation values for BLRM and LRM were 0.019 and 0.080 
respectively. This indicates that frequency effect through standard 
error development towards proposed BLRM can enhance the 

achievement and efficiency besides giving more accurate results to the 
estimating model. In this manner, inaccurate estimation of the actual 
regression coefficient values is more likely to occur for the LRM 
method 

The first condition for the best estimator is to investigate the 
consistency performance of our proposed model against LRM. In this  
case, it is the ratio to the average percent relative bias of coefficient as 
in Eq. (4), which is the same equation that was used by Peduzzi et al. 

(1996) and graphically illustrated in Fig. 4. The results showed that 
the average percent relative bias values of BLRM decreased with 
increased numbers of EPV. As mentioned by Peduzzi et al. (1996), 
small EPV values lead to inconsistent coefficient. However, with the 
used of plug-in principle of bootstrap in LRM, this problem can be 
solved; the average per cent relative bias of coefficient value was 
found to decline with increased EPV values as shown in Table 5 and 
Fig. 5. This decrement happened consistently and was smaller 

compared to LRM. For example, in BLRM with the coefficient value 

of 2 (LRM values are in parentheses) the EPV value of 2 is 34.603 

(73.408), and it continuously reduced to 28.306 (73.415), 22.120 

(73.444) and 12.161 (73.445) when EPV values increased to 3, 4 and 
5. These results provided evidence that the coefficient values of LRM 
are unstable. This table also revealed that at 2 EPV, the average 
percent relative bias is the highest, so that regression coefficients are 

overestimated by an average of 7.01% for 1 and by 34.60% for 2 . 
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Table 2 Statistical summary of z-value for LRM and BLRM coefficient of all factors. 

Statistical Estimation Variables 

Events Per Variable (EPV) 

LRM BLRM 

2 3 4 5 2 3 4 5 

Standard deviation 

x1 0.512 0.512 0.511 0.512 0.070 0.102 0.063 0.090 

x2 0.745 0.743 0.741 0.745 0.025 0.031 0.018 0.020 

x3 0.326 0.327 0.326 0.326 0.019 0.027 0.018 0.029 

Skewness 

x1 0.371 0.368 0.368 0.367 1.981 2.215 2.157 1.998 

x2 -1.971 -1.975 -1.982 -1.970 -0.824 -0.558 -0.604 -0.334 

x3 -0.965 -0.952 -0.960 0.966 0.341 0.281 0.218 1.286 

p-value 

x1 0.997 0.897 0.952 0.977 0.113 0.107 0.020 0.015 

x2 8.5E-7 3.6E-7 9.6E-8 3.8E-8 1.0E-7 2.2E-7 8.6E-8 0.015 

x3 0.157 0.138 0.116 0.116 0.382 0.672 0.242 2.0E-5 

Wald 

x1 0.00 0.016 0.003 0.00 2.510 2.596 5.409 5.842 

x2 24.241 25.859 28.451 30.240 28.206 26.796 28.654 5.901 

x3 1.997 2.190 2.460 2.463 0.762 0.178 1.368 18.177 

Table 3 Normality test for LRM and BLRM. 

Normality 
Test 

Variables 

Events Per Variable (EPV) 

LRM BLRM 

2 3 4 5 2 3 4 5 

Kolmogorov 
Smirnov Z 

x1 4.442 4.592 4.791 4.989 4.333 4.162 3.416 3.382 

x2 4.745 4.919 5.169 5.344 6.388 5.657 4.593 4.814 

x3 5.786 5.973 6.296 6.494 5.920 4.578 5.771 6.044 

Kolmogorov 
Smirnov 

x1 0.150 0.150 0.149 0.149 0.145 0.131 0.092 0.085 

x2 0.163 0.164 0.164 0.164 0.237 0.196 0.140 0.144 

x3 0.210 0.209 0.209 0.209 0.216 0.148 0.189 0.191 

Shapiro-Wilk 

x1 0.897 0.897 0.897 0.897 0.963 0.976 0.975 0.978 

x2 0.954 0.954 0.954 0.953 0.941 0.961 0.973 0.960 

x3 0.965 0.965 0.965 0.965 0.959 0.959 0.947 0.938 

p-value 

x1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

x2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

x3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
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Fig. 2 Frequency distribution of regression coefficient estimation for (a) Temperature, 
second variable ( 2x ) and (b) Total basic number of reproduction, third variable ( 3x ). 

Fig. 3  Distributionof the z-statistic for reproduction number under the null hypothesis that the covariates has no 
effect with outcome where the box line histogram is non-hibrid distribution whereas the white histogram 
represents bootstrap distribution 
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Table 4 Statistical summary of variable x1. 

Events Per Variable (EPV) 

LRM BLRM 

2 3 4 5 2 3 4 5 

Standard Deviation 0.080 0.080 0.080 0.080 0.019 0.019 0.015 0.016 

Minimum -0.291 -0.291 -0.291 -0.291 -0.030 -0.028 -0.017 
-0.012 

Maximum -0.004 -0.004 -0.004 -0.004 0.026 0.032 0.032 
0.038 

Fig. 4 Number of events per variable and frequency distribution of estimated regression coefficient for total 
reported dengue cases according to locality ( 1x ) for (a) LRM versud BLRM, (b) EPV 5, (c) EPV 4, (d) EPV 3 and 

(e) EPV 2 
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Apart from that, the consistency condition was further investigated 
using proportions as depicted inTable 6. At 2 EPV to EPV 5, it was 
revealed that the proportions decreased substantially and it exceeded 
0.010 for all variables in both LRM and BLRM. However, 
proportions of all variables in BLRM were smaller than LRM. For 

instance, the proportion of simulation in which the average relative 
bias exceeded 100% at 2 EPV is 0.014, in contrast with 0.020 in 
LRM. 

Table 5 Average percent relative bias (100%) for LRM and BLRM. 

Coefficient Model 
Events Per Variable (EPV) 

2 3 4 5 

1
LRM 10.126 10.117 10.111 10.121 

(BLRM) (7.008) (6.561) (5.994) (5.121) 

2
LRM 73.408 73.415 73.444 73.445 

(BLRM) (34.603) (28.306) (22.120) (12.161) 

3
LRM 19.937 19.930 19.924 19.951 

(BLRM) (18.748) (16.837) (14.585) (8.889) 

The odd ratio for 1 showed that the values of BLRM were 

persistently greater compared to two other variables at 2 EPV, most 

probably due to the relatively small impact of 2 on outcome (Table 

6 and Fig. 6). For comparison, odd ratios (Table 7) for 2 and 3

were 3.728 and 6.1E+1, respectively. Similar patterns were observed 

for comparison between 2 and 1 . 

Table 6 Proportion of simulation in which average relatives bias 
exceeded 100%. 

Coefficient Model 
Events Per Variable (EPV) 

2 3 

4 5 

1
LRM 0.020 0.018 0.017 

0.016 

(BLRM) (0.014) (0.012) (0.010) 

(0.008) 

2
LRM 0.146 0.137 0.124 

0.116 

(BLRM) (0.069) (0.052) (0.037) 

(0.019) 

3
LRM 0.039 0.037 0.033 

0.031 

(BLRM) (0.037) (0.031) (0.024) 

(0.014) 

Fig. 5 Number of events per variable and average percent of relative bias for (a) LRM and (b) BLRM. 

Abbreviations for variables are 1 = Totalreported dengue cases, 2 = Locality temperature, 3 = Aedes 

mosquito’s reproduction estimation in the locality observed. 

Fig. 6 Number of events per variable and proportion of simulation in which the average percent relative 
bias exceeded 100% , (a) LRM and (b) BLRM. Abbreviation are as indicated in Fig. 5. 
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Fig. 7 Number of events per variable and MSE of (a) LRM and (b) BLRM. 

 
 
 

Table 7 Odd ratio of LRM and BLRM. 
 

Coefficient Model 
Events Per Variable (EPV) 

2 3 4 5 

1
  

LRM 0.922 0.922 0.922 0.922 

(BLRM) (0.966) (0.001) (1.006) (1.015) 

2
  

LRM 48.482 48.630 48.616 48.498 

(BLRM) (3.728) (2.766) (2.052) (0.967) 

3
  

LRM 3.3E+2 3.2E+9 3.2E+2 3.3E+2 

(BLRM) (6.1E+1) (9.1E+9) (8.9E+8) (4.7E8) 
 

The performance of the proposed model was further investigated 
by looking at the efficiency conditions towards small EPV values 
compared to the LRM model. Our analysis concentrated on MSE and 

RMSE as in Eq. (6) and Eq. (7) respectively. The MSE and RMSE of 
regression coefficient values are displayed in Table 8 and Fig. 7. 
According to the estimation theory, the smaller the variance (as well 
as MSE and RMSE), the better the estimate would be. As illustrated in 
Table 8, it is clear that the MSE values of BLRM (RMSE in 
parentheses) decreased as the EPV values increased.  

However, when we look at LRM, it is revealed that the values of 
MSE and RMSE were unstable as EPV values increased. For 

example, the MSE and RMSE (in parentheses) values of parameter 1

for BRLM were 7.208 (2.357), 4.756 (1.891), 2.750 (1.422) and 0.959 

(0.801), which decreased as EPV values increased, Compared to 
LRM, whose values were unstable, i.e. 40.879 (5.840), 40.926 
(5.842), 40.948 (5.845) and 40.912 (5.843) for EPV values of 2, 3, 4 
and 5 respectively; the BLRM values were stable. From Table 6, the 
results clearly showed that our proposed model was more efficient 
when compared to LRM, particularly when the EPV values were 
small. The value of MSE and  RMSE (Fig. 7) were subsequently 
transformed into diagrams. It was found that all coefficients showed a 

down ward pattern. 

To prove that the proposed model is better in estimating when 
extended further through confidence interval, Eq. (8) is used. 
According to the estimation theory, the shorter the interval, the better 

the estimate or by definition of confidence interval, i.e. the level of % 
of the true values included in the model.Table 9 and Fig. 8 show that 
the proportion of simulations in which 95% confidence limit about 
estimated value included the true value for both models. Under 
coverage occurred with the greatest variability in coverage for LRM 
estimation for all variables. Table 9 shows that all coefficient values 
of BRLM were greater than 95%. On the other hand, the coefficient 

values for LRM were as follows: 1 a bit more than 40%; 2 and 3

are 35% and less than 25%, respectively. This result revealed that our 
proposed model included 90%-95% of the true values which were 

included in the model.However, based on Table 9,only 25 % to 40% 
of the true values for LRM were included in the model (or less than 

half of BRLM). The proportion of bootstrap of 2 at 2 EPV and 3 at 

3 EPV were still greater than 0.90, and can be considered to be in the 
range of reliable and high coverage of confidence interval (Peduzzi et 
al., 1996). From this result, it is clear that by hybridizing the bootstrap 
method with LRM, the model effectiveness can be increased 
especially when EPV values are small.  

 
 

Table 8 Comparison between LRM and BLRM based in MSE and RMSE. 
 

Coefficient Model 

Events Per Variable (EPV) 

MSE RMSE 

2 3 4 5 2 3 4 5 

1  
LRM 40.87 40.92 40.94 40.91 5.84 5.84 5.84 5.84 

(BLRM) (7.20) (4.75) (2.75) (0.95) (2.35) (1.89) (1.42) (0.80) 

2  
LRM 53.41 53.48 53.50 53.46 6.67 6.67 6.68 6.67 

(BLRM) (9.22) (6.04) (3.47) (1.29) (2.67) (2.13) (1.59) (0.92) 

3  
LRM 7688.71 7686.84 7678.39 7703.07 79.82 79.78 79.78 79.89 

(BLRM) (1510.07) (1129.47) (760.34) (464.88) (33.32) (27.96) (27.96) (14.26) 
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Table 9 Proportion of simulation with 95% confidence interval of the estimated regression coefficient. 

Coefficient Model 
Events Per Variable (EPV) 

2 3 4 5 

1
LRM 0.402 0.401 0.402 0.401 

(BLRM) (0.963) (0.949) (0.964) (0.944) 

2
LRM 0.350 0.350 0.350 0.351 

(BLRM) (0.906) (0.905) (0.915) (0.917) 

3
LRM 0.246 0.246 0.246 0.246 

(BLRM) (0.964) (0.962) (0.974) (0.980) 

Table 10 Proportion of simulation in which the square root of Wald statistics exceeded the standard normal deviate of 1.645. 

Coefficient Model 
Events Per Variable (EPV) 

2 3 4 5 

1
LRM 0.840 0.900 0.880 0.900 

(BLRM) (0. 600) (0.600) (0.590) (0.600) 

2
LRM 0.841 0.858 0.880 0.897 

(BLRM) (0.580) (0.626) (0.638) (0.648) 

3
LRM 0.841 0.857 0.880 0.896 

(BLRM) (0.618) (0.666) (0.681) (0.694) 

Fig. 8 Proportion of simulation in which the 95% confidence interval of the estimated regression 
coefficient included the true value of (a) LRM and (n) BLRM. Abbreviations are as indicated in Fig.5. 

Fig. 9 Proportion of simulation in which the z-statistic (coefficient/standard error) exceeded the standard 
normal deviate 1.645 for 95% power of (a) LRM and (b) BLRM.Abbreviations are as indicated in Fig.3. 
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Table 11 Proportion of simulation in which the z-statistic < 95% level: Type III error (paradoxical fitting). 

Coefficient Model 
Events Per Variable (EPV) 

2 3 4 5 

1
LRM 0.50080 0.50075 0.50068 0.50063 

(BLRM) (0.42152) (0.42147) (0.42114) (0.42086) 

2
LRM 0.18459 0.18431 0.18415 0.18444 

(BLRM) (0.42152) (0.38316) (0.38300) (0.38227) 

3
LRM 0.15914 0.15911 0.15907 0.15904 

(BLRM) (0.38285) (0.34527) (0.34533) (0.34481) 

Table 10 and Fig. 9 show the proportion of simulations in which 
the z-statistic (square root of Wald statistic) exceeded the standard 
normal deviate of 1.645 which returned a 5% significance level. The 

power for variables bootstrap 1 decreased slowly with increasing 

EPV number. However, starting from 3 EPV until 5 EPV, the 

proportion of bootstrap 2 and bootstrap 3 slowly decreased, most 

probably due to the greater standard errors (data not shown). For 

example, at 3 EPV, the BLRM for 2 and BLRM for 3 were 33.72 

and 197.29 respectively, while the BRLM for 1 was 0.85. 

Table 11 show the proportion of simulations in which the z-
statistic was paradoxically reversed to value less than -1.645, which 

was low for LRM, while for BLRM it was moderate for all regression 

coefficients except for BRLM 1 . Additionally, LRM indicated 

inconsistent decreasing and increasing pattern of paradoxical fitting as 

the EPV values rose (EPV 2 to EPV 5). For example, the pattern of

2 started with 0.18459 then decreased to 0.18431 and 0.18415 but 

later increased to 0.18444. However, if we look at BRLM, the 

coefficient 2 showed a decreasing pattern starting with 0.42152 

before dropping to 0.38316 and declining slowly to 0.38300 and 
0.38227 as the EPV increased. 

CONCLUSION 

This research was derived from the overestimation and 
underestimation issues faced by Peduzzi et al. (1996), especially when 
involving the small EPV values. To overcome these issues, we 

constructed a hybrid LRM with bootstrap method, namely BLRM, to 
improved standard error developing method and confidence interval. 
To measure the effectiveness of the developed model and to ensure no 
loss of generality, all measurements used by Peduzzi et al. (1996)  
were also used in this research. The simulation studies revealed that 
consistency and efficiency of the proposed BLRM could solve the 
problems that are insofar still faced by Peduzzi et al. (1996). Among 
them: (i) the proposed BLRM model confirmed that allproduced 
regression coefficient values were consistent. This can be shown by 

the regression coefficient value that decreased simultaneously with the 
increased EPV value. In contrast, regression coefficient values for 
LRM were unstable (labile) as increment and decrement of regression 
coefficient values occurred when the EPV value increased; (ii) the 
proposed BLRM model also revealed that regression coefficient value 
produced was efficient. This can be proven by MSE and RMSE values 
that decreased with the increment of EPV value. But this scenario did 
not occur for LRM where MSE and RMSE values increased 

simultaneously with EPV value increment.   
The same result was obtained for the confidence interval, where 

BLRM values were shorter compared to LRM values. This indicates 
that the estimated value produced by BLRM is better compared to 
LRM especially those involving small EPV values. Overall, the 
hybridized bootstrap and LRM method showed a more consistent, 
efficient coefficient regression and produces shorter CI compared to 
when LRM was used as the sole method. According to this research, it 

is clear that the suggested BLRM could overcome the problems faced 
by Peduzzi et al. (1996). 
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