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Abstract 
 
Polycrystalline compositions based on MgO, SO3 and B2O3 have both scientific and technological 
importance because of their useful applications. Doping with rare earth elements not only due to a 
rearrangement in the structure, but also to variation in the luminescence properties. Magnesium 
sulfide borate doped samarium oxide (MgSBO3:Sm3+) phosphors were prepared by solid state 
reaction and their structural and luminescence characteristic were studied and reported. IR and 
Raman spectral studies have been made to explore the presence of functional groups and various 
structural units in the prepared Polycrystalline. The formation of SO4, BO4, BO3, B-O-B and S-O-B 
structural units have been investigated. The emission and excitation properties were studied. And 
the results show that the emission and excitation spectra of these phosphors can be excited by 
ultraviolet (UV) 341, 370 and 403 nm light, and emit green, yellow and red light with intense peak at 
601 nm, which are nicely in accordance with the widely applied near- UV LED chip. The emission 
spectral intensity of Sm3+ ions in the titled phosphors increases up to 1 mol% of Sm3+ ions and then 
decreases for 1.5 mol%. These results indicate that MgSBO3:Sm3+phosphor could be a potential 
suitable orange-red emitting phosphor candidate for white LEDs with excitation of a ~403 nm near 
UV LED chip. 
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INTRODUCTION 
 

A light-emitting diodes (LEDs) have many significant such as 

energy saving, high luminous efficiency, environmental protection and 

maintenance when compared with the incandescent and fluorescent 

lamps (Kumar et al., 2013). In few years, remarkable advancement can 

be seen in the improvement of white LED utilizing GaN and in addition 

InGaN chip. Obviously, three ways to produce white LEDs: (i) a blue 

LED is combined with a yellow YAG:Ce phosphor, (ii) mixing red, 

green, and blue emissions from three LEDs and (iii) exciting 

red/green/blue tricolour phosphors with a near-UV LED (370–410 nm) 

(Liao et al., 2012). The third one (iii) is more convenient way to obtain 

white LEDs due to the advantages, generated white colour by 

phosphors, that is, high tolerance to UV chips’ colour variation, intense 

luminescence efficiency as well as chemical stability. However, there 

exist disadvantages in this mix, viz., white emitting color changes with 

input power, low color rendering index due to two color mixing and 

low reproducibility due to strong dependence of white color quality on 

an amount of phosphor. To solve these problems, LED phosphors has 

been employing such as green, yellow and red, which are excited by 

ultraviolet (UV) (Mao et al., 2014). However, the commercially 

applicable red phosphor of MgSBO3:Eu3+ is lower efficient under near 

UV light excitation wavelength within 300 to 400 nm region, and its 

decomposition products are harmful to the environment (Dalhatu et al., 

2016). Therefore, it is an urgent to investigate new red-emitting 

phosphors that can be efficiently excited by the near UV LED range 

350 to 410 nm chips. The rare earth are good activators, especially Sm3+ 

is an essential activator for many different inorganic lattices to yield 

orange–red emission due to its 4G5∕2→6H5/2, 4G∕2 → 6H7/2, 
4G5∕2 → 6H9/2 

and 4G5∕2 → 6H11/2 transitions. 

 Luminescent properties of phosphors are strongly dependent on 

the crystal structure of the host lattice and the kind of activator. To our 

knowledge, alkaline earth borate is considered as potential host 

matrices for phosphors because of its excellent thermal stabilization, 

stable crystal structure, cheap raw material (H3BO3) and excellent 

optical properties (Li et al., 2010). The luminescence properties of 

samarium as a doped have been reported by many researchers. For 

example, LaInO3: RE3+ (RE = Sm, Pr and Tb) phosphor have 

application for field emission displays (Liu and Lin, 2009). The 

Bi2ZnB2O7 doped Sm3+ phosphor considered as a luminescence for 

solid state lightning (Palaspagar et al., 2015). ZnGa2O4:Mn2+ and 

LaGaO3:Ln3+ (Ln= Eu, Tb, Dy, Tm, Sm) phosphors is a candidate for 

applications in field of white LED (Mao et al., 2014). There are some 

reports currently about phosphor for white LEDs (Zhang et al., 2012; 

Li et al., 2009). The IR and Raman spectroscopy are an important tool 

for study of structural features of a material. The borate network. Borate 

are known to have important properties which include low melting 

point, good thermal stability, good solubility of rare-earth ions (Guan 

et al., 2013). Borate constitute an interesting system, which the network 

building unit can be either borate triangles (BO3) with non-bridging 

atoms or borate tetrahedral (BO4) with all bridging oxygen atoms. 

Borate glass can easily be melted, owning smaller mass compare to 

others glass network former, thermal stable and chemical durable 

(Dalhatu et al., 2016). Previous reports show that the MgSBO3 
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compound is a good type of promising host material for rare-earth ions 

doped phosphor. However, there are no detailed reports on the 

luminescence properties of MgSBO3:Sm3+ under near UV excitation 

and its potential application in near UV LEDs. in the this work, Sm3+ 

doped MgSBO3 was synthesized by a solid-state reaction for the first 

time, structural and luminescence characteristics were investigated. 

The results showed that MgSBO3:Sm3+ may potentially be a good 

candidate as red phosphor for near UV LEDs. 

 
 
EXPERIMENTAL 

 
Materials 
       The starting materials were the analytic H3BO3, MgO, H2SO4 and 

Sm2O3 (99.99% in mass). were used as beginning materials for 

preparing polycrystals having the compositions10MgO‒40SO4‒(50-

x)B2O3‒xSm2O3 mol% (0.1≤ x ≤1.0). The Powder samples of 

MgSBO3:Sm3+ samples were prepared by the conventional solid state 

reaction method. After the individual materials, had been mixed in the 

requisite proportions sufficiently, the powders were calcined at 800°C 

for 4 hours. The obtained products were MSBO3:Sm3+ phosphors. The 

structure was checked by powder X-ray diffraction (XRD) D/max–rA, 

CuKα, 40 kV, 100 mA, IR measurements are carried out using Perkin-

Elmer Spectrum and Raman measurement is perform by a Raman 

Xplora plus spectrometer. The emission and excitation spectra were 

measured by a Shimadzu RF-540 ultraviolet spectrophotometer. All the 

photoluminescence properties of the phosphors were measured at room 

temperature. 

 
 
RESULTS AND DISCUSSION 
 

Structure of MgSBO3:Sm3+ phosphor 
        The X-ray diffraction analysis was carried out to investigate the 

crystalline phase of the magnesium sulfoborate doped Sm3+. Fig.1 

shows the XRD pattern for MgSO3B3 and MgSO3B3-1Sm2O3 mol%. All 

diffraction peak positions correspond to that of the triclinic phase of 

MgSO3B3 and the diffraction peaks matched well with the standard data 

(JCPDS no. 01-072-1068). No Sm3+ ion phase was detected, proving 

only act as a dopant and not changing overall host lattice which confirm 

the formation of a single-phase MgSO3B3(Dalhatu et al., 2016). 

 
Fig. 1 XRD pattern for MgSO3B3 and MgSO3B3-1Sm2O3 mol% phosphor. 

 

        The IR spectra of 10MgO+40SO3+(50-y) B2O3+ySm2O3 with y 

from 0.1 to 1.0 mol % are shown in Fig. 2. As the concentration of 

doped Sm3+ increased up to 1.0 mol %, the vibration modes are still 

similar without changing much in term of position and shape. The 

bending mode of δ(SO4)2-, (BO3)- is located at around 432-473 cm-1 

appeared in all the spectra (Vyatchina et al., 2009). The band observed 

at about 548-560 cm-1 appeared in all spectra which is due to bending 

mode of δ(SO4) and δ(BO4) (Daub et al., 2013). The bending vibration 

of SO4
2- which is located at around 613-630 cm-1 is observed in the 

spectra when the content of Sm2O3 is from 0.3 to 1.0 mol % (Vyatchina 

et al., 2009). The band at around 701-715 cm-1 appeared in all spectra 

is due to bending of B-O-B linkages in borate network (Ganguli and 

Rao, 1999). The intensity of the band is increased as the content of 

Sm2O3 decreased. The vibration combination of BO3 and BO4 group is 

shifted to the high wavenumber was observed in all the spectra which 

is located around 870-880 cm-1 (Vyatchina et al., 2009), the intensity 

of the band is increases as the content of Sm2O3 increased. The intensity 

of the band is increased with increased the content of Sm3+. The 

asymmetric stretching vibration (S-O-B) is splitting into two small 

bands at 924 cm-1 and 986 cm-1 (Daub et al., 2014). The splitting of the 

band indicates that the vibration of S-O-B is stronger with Sm2O3 

content. The band at round 1040-1078 cm-1 appeared in all spectra 

which is due to B-O bond symmetric stretching vibration of the 

tetrahedral BO4 units (Rada et al., 2010). Asymmetric vibration (S-O) 

of the SO4 tetrahedral is located around 1204-1207 cm-1 appeared in all 

the spectra (Daub et al., 2013). The bands around 1340-1350 cm-1 and 

1444-1447 cm-1 appeared in all spectra which is due to boroxol rings 

and B-O bond asymmetric stretching vibration of the trigonal BO3 units 

respectively (Rada et al., 2010).  

 
Fig. 2  IR spectra for magnesium sulfoborate doped with 0.1 ≤ y ≤ 0 mol% 
of Sm3+ phosphor. 

 
Fig. 3 Raman spectra for magnesium sulfoborate doped with 0.1 ≤ y ≤ 
1.0 mol % of Sm3+ phosphor. 
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The Raman spectra of 10MgO+40SO3+(50-y)B2O3+ySm2O3 with 

0.1 ≤ y ≤ 1.0 mol % are shown in Fig. 3. The mode of SO4
2- group which 

is around 450 cm-1 is observed in the Raman spectra when the content 

of Sm2O3 is 0.1mol %  (Daub et al., 2014). This is due large amount of 

SO3 and small amont of B2O3.  While band at 497 cm-1 is observed in 

the spectra when the content of Sm2O3 is 0.7 and 1.0 mol % which is 

due to the non-ring BO4
- (Youngman and Zwanziger, 1996). A small 

band at 720 cm-1 appeared in all the spectra which is due to bending 

vibrations of B-O-B linkages (Vyatchina et al., 2009). As the Sm2O3

content increases, one spectacular change in the Raman band is 

observed, i.e; the splitting of band at 804 into two small bands at 793 

cm-1 and 805 cm-1 is due to symmetric vibration of boroxol rings 

(Yiannopoulos et al., 2001). The Raman band at 873 cm-1 is due to 

sulfoborate type S-O-B (Ganguli and Rao, 1999). The intensity of S-O-

B increased as the content of Sm2O3 increased. This is due to large 

amount of SO3 B2O3. The intense peak among all the peak was observed 

at band 984 cm-1 is due to the Symmetric stretching vibration of the SO4

ion (Vyatchina et al., 2005). The intensity of SO4
 ion is increased as the 

content of Sm2O3 decreases with SO3 content at 40 mol %. This shows 

that at small content of Sm2O3 the vibration of SO4
 ion is stronger. The 

band at 1060 cm-1 is observed in the spectra when content of Sm2O3 is 

o.1 mol % which is due the mixture from vibration of BO4 and SO4 

(Daub et al., 2014). This indicates that at large amount of boric oxide 

and sulfate the vibration is intense. Table 1 summarized IR and Raman 

band assignments and the reported values for dopants crystal samples.

Table 1 IR and Raman for magnesium sulfoborate doped  Sm3+ phosphor. 

Emission and excitation spectra of MgSBO3:Sm3+ phosphor 
The excitation of 10MgO+40SO4+(50-y) B2O3+ySm2O3 with 0.1 

≤ y ≤ 1.0 are presented in Fig. 4. The excitation spectra are obtained by 

monitoring at emission wavelength of 601 nm in the range of 275-450 

nm. A total of three excitation spectra were observed from ground state 

of 6H5/2 to the excited state 4D3/2 (341 nm), 6P7/2 (370 nm) and 6F7/2 (403 

nm) of Sm3+ ions respectively (Liu and Lin, 2009; Zhang et al., 2006; 

Changmin et al., 2007). The peak position and the shape of the 

excitation spectra do not change as the concentration of Sm3+ ions 

increase. Meanwhile, the intensity of the excitation spectra increases as 

the concentration of Sm3+ ion increases up to 1.0 mol%, beyond is 

decrease in intensity with increases in concentration of Sm3+ ion was 

observed. Among the transitions, the intense excitation spectra at 403 

nm (6H5/2→6F7/2) was chosen to measure the emission spectrum of 

10MgO+40SO3+(50-y) B2O3+y Sm2O3 with 0.1 ≤ y ≤ 1.0. 

         Fig. 5 shows the emission spectra of 10MgO+40SO3+(50-

y)B2O3+y Sm2O3 with 0.1 ≤ y ≤ 1.0. The emission spectra show four 

emission bands corresponding to 4G5/2→6H5/2 (561 nm), 4G5/2→6H7/2

(601 nm), 4G5/2→6H9/2 (644 nm), and 4G5/2→6H11/2 (706 nm) transition  

(Liao et al., 2012; Liu and Lin, 2009; Changmin et al., 2007; Xiong et 

al., 2014). Among the four observed bands, the 4G5/2→6H7/2 is more 

intense. From Fig. 5, the emission spectral intensity of Sm3+ ions in the 

titled phosphors increases gradually up to 1 mol% of Sm3+ ions and 

then decreases for 1.5 mol%. This concentration quenching observed at 

1mol% of Sm3+ ions in these phosphors may be due to nonradiative 

energy transfer processes among the Sm3+ ions (Xiong et al., 2014). 

These phosphors have a very distinct orange–red luminescence, which 

is mainly due to the luminescence of the intense 4G5/2→6H7/2 (601 nm) 

and 4G5/2→6H9/2 (644 nm). Therefore, these transitions clearly a capable 

orange–red emitting phosphor for the LEDs (Palaspagar et al., 2015). 

Fig. 4 Excitation spectra for magnesium sulfoborate doped with 0.1 ≤ y 
≤ 1.5 mol % of   Sm3+phosphor. 

IR Raman Reported values Assignments 

463‒470 450‒497 440-470 (Vyatchina et al., 2009) Bending δ(SO4)
2-, (BO3)

-. 

548‒555 - 500-600 (Daub et al., 2013) bending δ(SO4) and δ(BO4). 

613‒630 620 610-630 (Vyatchina et al., 2009) Bending δ(SO4)
2- 

701‒715 720 720-790 (Vyatchina et al., 2009) Bending of B-O-B linkages 

- 793‒805 804 (Yiannopoulos et al., 2001) boroxol rings 

870‒986 879‒984 850-1060  (Daub et al., 2014) Asym. stretching vibr. (S-O-B) 

- 1011 1010 (Ganguli and Rao, 1999) Symm. Stret. Vib. of SO4
2- 

1046‒1074 1060 900-1100 (Rada et al., 2010) Symm.stret. vibr. of  BO4 units 

1204‒1207 - 1200 (Daub et al., 2013) Vas(S-O) vibration of the SO4 

1340 - 1350 (Rada et al., 2010) boroxol rings 

1451 - 1420-1550 (Rada et al., 2010) 
Asymmetric stret.  Vibr. of  BO3

units 
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         The energy level diagram of the Sm3+ ion doped magnesium 

sulfoborate phosphors are shown in Fig. 6 which shows the probable 

transitions involved in this process. The interaction of MgSBO3:Sm3+

phosphor with exciting wavelengths 403 nm, leads to the transition of 

Sm3+ ions from the ground level 6H5/2 to the higher levels 6F7/2. The 

Sm3+ ions from the higher states make non-radiative transition up to 
4G5/2 level after that the transitions are radiative, as the energy gap of 
4G5∕2→6H5/2, 4G∕2 → 6H7/2, 

4G5∕2 → 6H9/2 and 4G5∕2 → 6H11/2 transitions 

states are sufficient to give yellow-orange emission  (Bedyal et al., 

2014). 

   

Fig. 5 Emission spectra for magnesium sulfoborate doped with 0.1 ≤ y 
≤ 1.5 mol % of Sm3+phosphor. 

Fig.  6 The energy level diagram for magnesium sulfoborate doped with 
0.1 ≤ y ≤ 1.5 mol % of Sm3+phosphor. 

CONCLUSION 

In conclusions, MgSBO3:Sm3+ red phosphor was prepared by solid 

state reaction method. XRD analysis of the prepared material shows 

MgSO3B3 phase. IR and Raman studies confirm the presence of SO4, 

BO4, BO3, B-O-B and S-O-B structural units. The excitation spectrum 

indicates that the phosphor can be excited by near-UV, under excitation 

of 403 nm, the phosphor displayed orange-red luminescence with the 

emission spectrum bands at 561 (green color), 601 (yellow), 644 (red 

color) and 706 (red color) nm which are correspond to 

4G5/2→6H5/2,6H7/2, 6H9/2 and 6H11/2 transitions of Sm3+, respectively. 

Therefore, MgSBO3:Sm3+ phosphors are promising phosphors for 

white orange-red LEDs. 
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