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GRAPHICAL ABSTRACT 

ABSTRACT 

The mathematical modelling of EEG signals provides valuable data to neurologists, and is heavily utilized 
in the diagnosis and treatment of epilepsy. The erratic nature of these signals, coupled with their lack of a 
consistent visible trend results in a high degree of difficulty in forming a statistical model to describe 
seizures. Working with Delia-normalized signals, the authors compute the associated Shannon entropies 
for three sets of data, and show via construction that the information flow during an epileptic seizure can 
be viewed as a type-2 fuzzy graph. 
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1. INTRODUCTION 

Epilepsy is a chronic disorder of the brain that 
affects people all over the world. It is characterized by 
recurrent seizures - physical reactions to sudden, usually 
brief, excessive electrical discharges in a group of brain 
cells [1]. Seizures are classified into two major categories, 
partial seizures and generalized seizures. Partial seizures 
are those in which the clinical or electroencephalographic 
evidence suggests that the attacks have a localized onset in 
the brain [2]. This type involves only a part of the cerebral 
hemisphere at seizure onset and produces symptoms in 
corresponding parts of the body or disturbances in some 
related mental functions [3]. On the contrary, generalized 
seizures are said to occur if the evidence suggests that the 
attacks were well spread [4]. The diagnosis and treatment 
of epilepsy is greatly aided by the use of 
electroencephalography as a monitoring tool. 

Electroencephalography (commonly referred to by 
its abbreviation EEG) is the measurement of electrical 
activity produced by the firing of neurons in the brain. It 
operates by recording the fluctuations in the potential 
difference of electrodes attached to the scalp of a patient, 
with these fluctuations indicating the presence of neural 
activity [5]. In practice, computerized systems such as 
NicoletOne are used to digitize EEG signals before they 
are subjected to statistical analysis. It is not uncommon for 
the interpretation of clinical EEG to involve speculation as 
to the possible locations of the sources inside the brain 
which are responsible for the observed activity on the scalp 
[4]. 

The mathematical analysis of EEG signals aids 
medical professionals by providing a description of the 

brain activity being observed, thus increasing the 
understanding of human brain activity. 

2. RELATED WORK  

To date, numerous methods have been employed in 
the mathematical modelling of epileptic seizures, each with 
varying objectives and results. 

In 1986, Babloyantz and Destexhe used the time 
series of EEG data during a seizure to show the presence 
of deterministic dynamics of a complex nature for seizures 
[6]. By identifying and comparing the chaotic attractors 
during ictal and between interictal seizures, they argued 
that an epileptic seizure is a low-dimensional state, which 
was further clarified by Stam as a “loss of complexity” [7]. 
This concept was further strengthened by Iasemidis et al. 
by computing the decrease of the largest Lyapunov 
exponent during an epileptic seizure [8], a result which 
was further corroborated in 1990 by Frank’s analysis of the 
EEG of absence seizures, in which he indicated the 
existence of an underlying chaotic attractor [9]. However, 
Theiler’s analysis of the same dataset showed that the 
supposed chaotic properties can be attributed to a noisy 
limit cycle [10]. Support for this opposing view can be 
seen in studies by Schiff et al. [11], Friedrich and Uhl [12], 
Hernndez et al.[13], Le van Quyen et al. [14], and Feucht 
et al. [15], which leads to the conclusion that the use of 
time series modelling is highly dependent on the quality of 
the EEG signals produced. In practice, a noise filter is 
applied prior to signal amplification to help remove white 
noise. However, one inherent problem with EEG 
recordings of seizures is the crossing of its input and 
output sets - all recorded signals (gross output) are a 
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combination of seizure activity (net output), exogenous 
noise, and the current source used to generate a potential 
difference between two electrodes (net input). Hence, to 
accurately model a seizure, dynamical noise reduction 
needs to be applied to isolate the signals generated from 
seizure activity alone, which in turn results in degradation 
of the source signal. 
 Nevertheless, modelling of the EEG signals of 
epileptic seizures endured, with focus shifting to 
forecasting brainstorms, reasoning for which is the ability 
to warn and prepare treatment for an impending seizure. 
The ultimate goal is to produce a closed system where a 
patient can be connected to an automated device that 
predicts the onset of seizures and administers the 
appropriate medication as necessary, a concept that was 
first outlined by Peters et al. in 2001 [16]. When it came to 
forecasting brainstorms, nonlinear models took preference 
over linear models. Studies conducted by Elger and 
Lehnertz [17], and Martinerie et al. used intercranial EEG 
to show that seizures can be anticipated, sometimes up to 5 
minutes in advance [18]. In 2001, Le van Quyen 
demonstrated that seizure prediction can be carried out 
with surface recordings alone [7], jumpstarting research 
into noninvasive models for seizure prediction. 
Consequently, various approaches were employed to 
model seizures, including Lyapunov exponents [19] 
(shown to be inapplicable for low-dimensional 
deterministic chaotic systems such as epileptic seizures by 
Lai et al. In 2003 [20]), correlation integrals and 
dimensions [21] (also shown to be inapplicable for 
epileptic seizures [22]), phase clustering [8], [23], and 
entropy measures [24]. Although some of these models 
were quite successful, they are very specific in nature, only 
being able to model a very small subset of seizures a 
common flaw in nonlinear models. Additionally, Mormann 
et al. have highlighted that although most of the studies 
published in the 1990s and around the turn of the 
millennium yielded rather promising results, more recent 
evaluations could not reproduce these optimistic findings 
[25]. 
 It was only after analysis of Martinerie’s earlier 
work that McSharry et al. discovered that linear measures 
could also be used to model seizures [26]. The 
acceptability of linear models was solidified with 
Kugiumtzis and Larsson concluding that nonlinear 
methods 
offered no significant advantage over linear models [27]. 
This result was followed up in 2001 by Jerger, who 
compared 7 different linear and nonlinear measures and 
found that both classes of measures produced similar 
results [28]. This provided strength to existing linear 
models, such as Baillet and Garnero’s Bayesian-based 
model [29]. Although Bayesian modelling proved 
successful, its reliance on apriori information yields a low 
level of accuracy for patients who have a low occurrence 
of seizures. Furthermore, additional data cannot be 
generated by inducing seizures, as the Pavlovian effect on 

seizure provocation is still undetermined [30]; that is, 
researchers are unable to identify if repeated seizure 
provocation results in specific brain cells being 
conditioned to react to stimuli, thus jeopardizing the 
integrity of the data obtained. 
 With the introduction of new mathematical tools 
over the last decade, more complex models were 
developed. In 2008, Faust et al. successfully applied Burg 
autoregressive coefficients in the modelling of epileptic 
seizures, achieving an accuracy of over 90% in detecting 
seizures [31]. This result was bettered by Sivasankari and 
Thanushkodi in 2009 using fast independent component 
analysis coupled with neural networks [32]. These 
methods, although highly successful, are of high 
complexity and are notoriously resource intensive. 
 In 2000, Ahmad et al. formulated a fuzzy-based 
topological model to identify the foci of an epileptic 
seizure [33]. The model, called Fuzzy Topographic 
Topological Mapping (FTTM), involves inducing a 
topology on the magnetic field of 
magnetoencephalographic (MEG) recordings and utilizes 
fuzzy techniques to estimate the location of the epileptic 
foci [34]. The epileptic foci here refer to points in the brain 
from which the seizures are assumed to originate. This 
method was further refined in 2008 to include EEG input 
[3]. Apart from estimating the epileptic foci, the FTTM 
method is able to index key events during the progression 
of seizures, as demonstrated in Idris’s 2010 paper [35]. 
 In 2012, Ahmad and Ramachandran showed that by 
normalizing the raw EEG data of epileptic seizures 
allowed seizure data to be fitted to a unit hypersphere, 
allowing it to be modelled as a von-Mises Fisher (vMF) 
distribution [36]. Using the same patient data as Idris, the 
authors analyze the information content of the Delia-
normalized signals and compare them to the clustering 
results in [35]. Proof by construction is then used to show 
that the EEG signals of epileptic seizures can be used to 
generate a type-2 fuzzy graph. 
 
 
3. PRELIMINARIES 
 

The following definitions and/or theorems are used 
in this research: 
 
Definition 1 (electrode set): The standard set of all 
monitored EEG electrodes during an epileptic seizure is 
called the electrode set, and is given by: 
 

 1 2{ , , , }nE e e e   (1) 

 

where ie  represents an EEG electrode that is being 

monitored during an epileptic seizure. 
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Definition 2 (reference subset): The subset of the 
electrode set that contains only reference electrodes is 
called the reference subset, and is given by: 
 

{ |  is a reference electrode}R e E e  .  
 
.Definition 3 (electrode potential set): In any given 
patient, the set of all potential differences detected during a 
seizure at time t  is given by: 
 

 { | , \ }t e eV v v e E R     (2) 

 

where ev  is the potential difference detected at electrode 
e  at time t  in relation to its closest reference electrode. 

tV  is called the electrode potential set at time t . 
 
Definition 4 (emulated baseline): The emulated baseline, 
 , is the average magnitude of electrical potentials 

detected across all monitored electrodes at a given time t  

in a seizure, and is given by: 
 

 1

| |
 for 

n

i
i

t i t

v
v V

n
  


  (3) 

 
Definition 5 (jitter): The jitter,  , is the total difference 

in magnitude of detected electrical potentials and the 
emulated baseline at a given time  in a seizure, and is given 
by: 
 

 
1

| | | |  for 
n

t i t i t
i

v v V 


     (4) 

 
Definition 6 (Delia EEG measure): The Delia EEG 
measure,  , is a measure defined on the power set of an 

electrode potential set, and is given by the set function: 

: ( )t eP V   such that 

 

 

1

0 if ( ) 0,

( ) | |
| | otherwise

n
i

i

n A

A v 



 



  (5) 

 
with the emulated baseline and jitter defined as in (3) and 
(4). 
 
Definition 7 (surprisal): Surprisal, or self-information, is 
a measure of information content concerning the outcome 
of a random variable. It is given as 
 

   logxI p x    (6) 

 
Where ( )p x  is the probability of outcome x  occurring. 

The unit of the surprisal measured depends on the base of 
the logarithm used, namely bits (base 2), nats (base), or 
dits (base 10) [37]. 
Definition 8 (Shannon entropy): Shannon entropy, H , or 
more commonly referred to as just entropy, is the expected 
value of the surprisal of a random variable, and is given in 
explicit form as 
 

       
1

log
n

i i
i

H X p x p x


    (7) 

 
where X  is a random variable with x X  as an event. 

Simply put, entropy is the average information content 
that is missing from a random variable [37]. 
 
Theorem 1 (Shannon’s source coding theorem): N  

independent identically distributed random variables each 
with entropy ( )H X  can be compressed into more than 

N  ( )H X  bits with negligible risk of information loss, 

as N  ; but conversely, if they are compressed into 

fewer than N  ( )H X  bits it is virtually certain that 

information will be lost [37]. 
 
Definition 9 (fuzzy graph): A fuzzy graph is a graph in 
which the vertex and/or edge sets are fuzzy sets. For any 
graph ( , )G V E , the functions 

GV  and 
GE  are defined 

such that : [0,1]GV S   , : [0,1]GE S S   , and 

( , ) ( ) ( )E x y E x E y   [38]. 
 
Theorem 2 (fuzzy graph taxonomy): There are five types 
of fuzzy graphs, namely: 
 

1. Fuzzy set of graphs 
2. Crisp vertex set in conjunction with a fuzzy edge 

set 
3. Crisp vertex and edge sets in conjunction with 

fuzzy connectivity 
4. Crisp edge set in conjunction with a fuzzy vertex 

set 
5. Crisp graph with fuzzy weights [incineration]. 

 
 
4. INFORMATIONAL CONTENT ANALYSIS 
 
 A short, terminal-based program was written in C to 
automate the computation of the Delia measure, surprisal, 
and entropy values. Based on the values computed,  three 
data sets were analyzed, namely a 10-second focal seizure 
(Patient A), a 15-second generalized seizure (Patient B), 
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and a 25-second focal seizure (Patient C). Seizure data is 
cropped to the period corresponding to ictal by our 
consulting neurologist, and is extracted to numerical form 
using Nicolet. Table 1 gives the entropy values of Patient 
A’s seizure in one-second time blocks. 
 Due to the difference in length for each seizure, a 
direct comparison between them is impossible on a 
second-by-second basis (a comparison left to use of a vMF 
distribution). However, it is possible to compare their 
minimum and maximum entropies to formulate a 
hypothesis regarding the relation between seizure length 
and information content. This information is given in 
Table 2. 
 Based on the maximum amount of entropy at any 
given time t  during all three data sets, we can see that for 
the focal seizures, the overall entropy present decreases as 
the seizure duration increases. This indicates that the 
longer the ictal period of a focal seizure is, the more 
predictable it becomes. 
  
 

Table 1 Entropic content of a 10-second seizure (Patient A). 

 

Time, t (seconds) Entropy, H (bits) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

8463.0296 
7502.6510 
6906.1181 
4493.9316 
8070.0361 

11798.1141 
12937.2516 
14222.2185 
12578.9076 
8817.3858 

 
  

Table 2 Occurrence of minimum and maximum entropies for 

patients A, B, and C. 

 

Patient 
Time of occurrence 

Minimum, tmin (seconds) Maximum, tmax (seconds)

A 4 (4493.9316H) 8 (14222.2185) 

B 3 (6906.1181) 5 (17300.2411) 

C 21 (2657.4386) 2 (9991.7922) 

 

 It is also worth noting that a generalized seizure 
indicates a higher entropic content, even when compared 
to a focal seizure of greater length. This implies that focal 
seizures carry more information in comparison to 
generalized seizures. This difference in informational 

content is most likely corresponds to the additional spatial 
data carried by focal seizures that enables us to identify 
their point of action. 
 What’s even more interesting is that the points of 
minimum/maximum entropy correspond to time frames of a 
seizure that optimally require the least/most clusters using 

Idris’s non-polar EEG EEGC   method, specifically at the 

4t s  and 8t s  mark. This observation, in conjunction 
with Shannon’s source coding theorem, indicates that 
epileptic seizures can be reconstructed from “building 
blocks”, and the minimum number of clusters corresponds 
to the entropic lower bound of the information required to 
reconstruct the signal. 
 

5. GRAPH CONSTRUCTION 

Given the entropies at each time t , it is possible to 
create a graph of a seizure’s progression in terms of 
information content. 

Theorem 3 (fuzzy graph of epileptic seizures): The EEG 
signals during an epileptic seizure can be presented in the 
form of a type-2 fuzzy graph. 
 
Proof: 
 
(via construction) 
 
Define the vertex set as follows: 
 

 { an epileptic seizure is recorded at }GV t t   

 
This results in a crisp vertex set. 
Define the edge function to be: 
 

    
 

i j

G
i

H x H x
E

H x


  (8) 

 

where  iH x  is the entropy at the vertex of edge origin, 

and  jH x is the entropy at the vertex of edge 

termination Then,  ( , )G GG V E  is a fuzzy graph of type-2. 

  It can be seen from Figure 2 (b), generalized 
seizures gain/lose the bulk of their entropy during the 
beginning/ending stages of ictal. This observation 
however, is absent in focal seizures (Figure 2 (a) and 
Figure 2 (c)), where the rate of information gain/loss is 
somewhat distributed across ictal. This indicates that 
generalized seizures display a more aggressive change in 
brain activity in comparison to focal seizures, an 
observation that is not visible in standard EEG. 
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(a) 
 

(b) 
Figure 1 Comparison between entropic content and number of optimal clusters as computed by Idris. The minimum/maximum entropy 
circled in red (a) corresponds to points in (b) which optimally require the least/most number of clusters. 

 

 

(a) 

 

(b) 

 

(c) 
Figure 2 Fuzzy graphs for 10-second (a), 15-second (b), and 25-second (c) seizures. The edge thickness represents the 
amount of entropy lost/gained between the connected vertices.  

 
6. CONLCUSION 
 

In this paper, the entropic information of three 
epileptic seizures was computed. A comparison with the 

optimal number of clusters obtained via the EEGC  method 

was made, and a correlation between the entropy and 
minimum cluster requirements were observed. A fuzzy 
graph of type-2 was then constructed for each set of data, 
resulting in the observation of a more aggressive profile for 
generalized seizures in comparison to focal seizures. 
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