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Abstract 
 
This study presents the application of selected environmetric in the Perlis River Basin. The results 
show PCA extracted nine principal components (PCs) with eigenvalues greater than one, which 
equates to about 77.15% of the total variance in the water-quality data set. The absolute principal 
component scores (APCS)-MLR model discovered BOD and COD as the main parameters, which 
indicates the measure of the agricultural pollution in the Perlis River Basin, the hierarchical 
agglomerative cluster analysis (HACA) shows 11 monitoring stations assembled into two clusters in 
accordance with similarities in the concentration of BOD and COD, which are grouped in P4. The X ̅ 
control chart shows that the mean concentration of BOD and COD in P4 is in the control process. The 
capability ratio (Cp) was applied to measure the risk of the concentration in terms of the river pollution 
in a subsequent period of time using the limit NWQS. 
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INTRODUCTION 
 

A river is a system that comprises a main course and its tributaries, 

which carrying the one-way flow of a significant load of matter in 

dissolved and particulate phases from both natural and anthropogenic 

sources (Shrestha and Kazama. 2007; Mohd, et al. 2011; Najar and 

Khan.2012: Rashid et al. 2013). Surface water is a natural resource 

essential for life on Earth and plays an important role in everyday 

human life (Zali et al. 2011; Ibrahim et al. 2015). In recent years, 

increasing attention has been given to surface water quality, since it is 

a component of the natural environment and considered as the main 

factor for controlling environmental health and potential hazards (Lim 

et al. 2013. The continuous economic expansion and industrialization 

in Malaysia have resulted in environmental problems with ever-

increasing land, air and water pollution (Ho, 1996). During the peak of 

the agricultural  development  in  the 1960’s  and  1970’s,  pollution  

from  the  agro-based industries  accounted  for  approximately  90%  

of  the industrial  pollution  load, while it  was  the  largest  source of 

water  pollution  during  a period  when  there  were inadequate  

provisions  for  regulating  the  discharge of  effluents (DOE, 1990). 

Although there has always been plenty of fresh water in Malaysia, a 

supply of clean water has not always been available due to an increasing 

water pollution problem.  

 

The water quality index (WQI) has been considered to provide criteria 

for surface water classification based on the use of standard parameters 

for water characterization (Sa’nchez et al. 2007). WQI is used as a basis 

for the assessment of a watercourse in relation to the pollution load 

categorization and the designation of classes of beneficial uses as 

stipulated in the National Water Quality Standard of Malaysia 

(NWQS). Therefore, the NWQS has applied in relation to the surface 

waters as a guideline for the classification of the different state of the 

river water quality. The WQI in Malaysia was derived using Dissolved 

Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical 

Oxygen Demand (COD), Ammoniacal Nitrogen (NH3-N), Suspended 

Solid (SS), and pH.  

Polluted water resources can have huge impact on human being 

since they can affect their health as well as their living and working 

environments. Water quality management requires robust methods to 

assess the influence of various point and non-point sources of pollution 

(Rode et al. 2010; Nigel et al. 2010; Zhao et al. 2014). Several 

statistical techniques, such as chemometrics and statistical process 

control (SPC), are considered as an effective approaches to support 

water quality management decisions. These techniques are also able to 

help in interpreting the complex data matrices, especially in the context 

of water quality and the ecological status of the studied system, which 

allows for the identification of possible factors/sources that influence 
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water systems and provides a valuable tool for the reliable management 

of water sources and a rapid solution to the problem of pollution (Vega 

et al. 1998; Lee et al. 2001; Adams et al. 2001; Wunderlin et al. 2001; 

Reghunath et al. 2002; Simeonov et al. 2002; Simeonov et al. 2004). 

In the present study, a large data matrix, obtained during 5-year (2003-

2007) monitoring program by the Malaysian Department of 

Environment (DOE) were taken into consideration to extract the spatio-

temporal information for the Perlis River monitoring stations, as part of 

the river water quality monitoring programme. Thirty physico-

chemical parameters were involved in this study. 

The objectives of this study were to identify the types of pollution 

sources at Perlis river basin in terms of different of land uses and 

surrounding activities, classify the most significant parameters, 

determine the most significant possible pollution sources for each 

rivers, which can contribute to river pollution loading, and discover the 

potential contamination of pollutants and perform the process 

capability of water quality in the study area.  

EXPERIMENTAL 

The watershed size of the Perlis River Basin covers approximately 

310 km² with 11 km of length through Kangar city to Kuala Perlis (DID, 

2009) as shown in Fig. 1 and Table 1. More than ten streams flow into 

the Perlis area, while the Perlis River is one of the most important rivers 

in Perlis. From January to April, the weather is usually hot and dry. 

From September to December, it is the rainy season with recorded 

temperatures between 21 °C and 32 °C, while the average annual 

rainfall is between 2000 ml and 2500 ml per year (Perlis, 2011a; Perlis 

2011b).  

Fig. 1 Map of Perlis River Basin. 

Table 1 Information of monitoring stations at Perlis River Basin. 

LONGITUDE LATITUDE STA No. RIVER LOCATION 

E 100° 09.426’ N 06° 26.013’ P1 Perlis Kg. Tebing Tinggi Bridge 

E 100° 14.927’ N 06° 28.007' P2 Ngulang Ngulang Cross Road's Bridge 

E 100° 17.495’ N 06° 32.661’ P3 Serai Kg. Batu Bertangkup 

E 100° 15.978’ N 06° 30.918’ P4 Jernih Bridge at Beseri 

E 100° 15.950’ N 06° 30.996’ P5 Jernih Kg. Siam 

E 100° 15.615’ N 06° 37.574’ P6 Jarum JPS Telemetry Station Kg. Titi Tinggi Ulu 

E 100° 18.382’ N 06° 39.250’ P7 Kok Mak Kg. Kolam, Padang Besar Road 

E100° 12.219' N 06° 37.718' P8 Pelarit Bridge near JPS Telemetry Station Pelarit River 

E100° 11.893' N 06° 42.268' P9 Wang Perlis State Park 
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Pre-Processing Data  
Preliminary work was undertaken in the data matrix that included 

assembly and data transformation. The data below the detection limit 

were substituted with values equal to half the detection limit. Normal 

distribution tests were carried out with the support of the W (Shapiro-

Wilk) test; the agreement of the distribution of the physico-chemical 

parameters of water with normal distribution was tested (Sojka et al. 

2008; Juahir et al. 2010; Samsudin et al. 2011). Standardization was 

applied to upturn the influence of variables whose variance is small and 

conversely. Log scaling is very common in environmental data since 

some of the variables might show very low or very high values.  

Principal Component Analysis (PCA) 
      Principal Component Analysis (PCA) was used to the normalized 

data set to examine the contrast in the compositional pattern among the 

analyzed water quality parameters (variables) and recognize the factors 

that influence each of the parameters (Mutalib et al. 2013; Azid et al. 

2014a; Azid et al. 2014b; Rwoo et al. 2014; Saudi et al. 2014; 

Kamaruddin et al. 2015; Isiyaka et al. 2015; Isiyaka and Azid. 2015). 

The new variable which is known as Principal Components (PCs) are 

the linear combinations of the original set of variables (Sousa et al. 

2007; Juahir et al. 2011a; Juahir et al. 2011b; Ismail et al. 2016). Factor 

loading gives the correlation between the original variables and the 

VFs, while the individually transformed observations are called factor 

scores (Vega et al. 1998). The VF coefficients having a correlation 

0.49–0.30 are considered ‘weak’ significant factor loadings, 

correlations in the range of 0.74–0.50 are considered ‘moderate’ and 

those in the range of >0.75 are considered ‘strong’ (Retnam et al. 2013; 

Azid et al. 2015). 

Absolute Principal Component Scores- Multiple Linear 
Regressions (APCS-MLR)      
      The quantitative contribution made by the various identified 

sources was determined based on the MLR of the Absolute Principal 

Component Scores (APCS) from the PCA. In APCS-MLR, the 

predicted influence of each pollution source upon the total 

concentration was determined using MLR, with the de-normalized 

APCS values produced by PCA as the independent variables and the 

measured concentrations of the particular pollutant (Zhou et al. 2007). 

The APCS–MLR model is based on the assumption that the total 

concentration of each contaminant is made up of the linear sum of the 

elemental contribution from each pollution component collected 

(Retnam et al; 2013). Source contributions were calculated after 

grouping the water quality parameters for each basin in this study into 

the number of factors and identifying the possible sources by PCA. 

Therefore, in order to find the source of the contribution, MLR was 

used to calculate sample mass concentration on the APCS (Simeonova 

et al. 2003). 

          The coefficient of determination, R², Adjusted R² and Root Mean 

Square Error (RMSE) are the values that need to be considered in 

determining the best fitting regression linear equation (Azid et al. 2014; 

Dominick et al. 2012). R² is defined as the proportion of variability in 

the dependent variable, which is the fundamental measurement of the 

goodness of the fit of a linear model and is the fundamental 

measurement of the goodness of the fit of a linear model which is 

accounted for by the regression equation (Dominick et al. 2012; Ilten 

and Selici. 2008). The performance of the MLR model was assessed 

using correlation coefficient R², adjusted correlation coefficient R², 

Schwarz Bayesian Criteria (SBC) and Akaike’s Information Criteria 

(AIC). The best model performance was selected when the R², adjusted 

R², AIC and SBC values are close to unity (Retnam et al. 2013). The 

minor difference in AIC and SBC indicate the MLR model fit for the 

prediction of possible pollution sources (Juahir et al. 2011a; Retnam et 

al. 2013; Aertsen et al. 2010). 

Hierarchical Agglomerative Cluster Analysis (HACA)       
       Hierarchical Agglomerative Cluster Analysis (HACA) is an 

independent pattern recognition technique that exposes constitutional 

structure or fundamental behavior of a data set, which is deprived of 

creating an assumption about data, to categorize the items of the system 

into categories or clusters based on their closeness or similarity (Cai et 

al. 2012; Ibrahim et al. 2015; Ismail et al. 2016). HACA was 

accomplished with the normalized data set by means of the Ward’s 

method, using Euclidean distances as a measure of similarity and by 

gathering items into groups, such that items in a cluster were like each 

other, while things located in other groups had dissimilarities with each 

other. 

Statistical Process Control (SPC) Technique       

       Statistical Process Control (SPC) is a tool used in the form of 

control charts, which displays variation by using a set of statistical rules 

for interpreting the control chart and searching for assignable causes of 

variation (Maurer et al. 1999). The objective of SPC analysis is to 

eliminate variability in the process. It may not be possible to eliminate 

variability completely, but the control chart is an effective tool in 

reducing variability as much as possible. The x and R charts are an 

example of these control charts with a subgroup size of two or more, 

which are coupled together in the statistical control process. Both charts 

will determine whether the process is stable and predictable. The x
chart will display average changes over time and the R-chart will 

display the range of subgroups changes over time. The x  and R charts 

are used for any process with a subgroup size greater than one which 

the size falls between two and 10. 

       According to Besterfield (2009), control chart is completed when 

there is an upper control limit, central line and lower control limit to 

determine whether  the process is stable or not (Saudi et al. 2015a; 

Saudi et al. 2015b; Saudi et al; 2015c). 

Capability Index         
       The process capability analysis will assist decision makers in 

making decisions whether the process is capable of complying with 

existing environmental legislation or benchmarks that are set for a 

sufficiently large proportion of time (Corbett and Pan, 2002). A 

measure of the stable and predictable is shown by the control charts, 

even though waste is produced. Cp, which is a measure of process 

capability is a necessary complement to a variables control chart. When 

the Cp value is 1.33 or greater, the operating personnel have the 

responsibility of keeping the process centered, stable and predictable. 

However, when the Cp value is 1.33 or reach a greater amount, the 

operating personnel are responsible to maintain the process centered, 

stable and predictable (Douglas, 2009). The process capability and  

tolerance are combined to form a capability index as defined in the 

following Eq. (1): 

Cp= 
USL−LSL

6σ0
                               (1) 

where Cp is the capability index, USL – LSL represents the upper 

specification limit substitute by the lower specification limit or 

tolerance and 6σ0 refers to the process capability. 

         According to Besterfield (2009), when the capability index is 

1.00, it is considered as Case (II) situation and if the ratio is greater than 

1.00, it will be referred as Case (I) situation which is desirable, and if 

the ratio is less than 1.00, Case (III) situation will take place which is 

undesirable. There are three possible situations will occur which is 

case(I) when the process capability is less than tolerance, (II) when the 

process capability is equal to the tolerance, and (III) when the process 

capability is greater than tolerance.  

RESULTS AND DISCUSSION 

PCA 
       PCA of the entire data set (Table 2) involved nine PCs with 

eigenvalues greater than one explaining about 77.15% of the total 

variance in the water-quality data set. From Table 2, VF1 shows that 

29.97% of total variance has strong positive loadings on conductivity, 

salinity, DS, TS, Cl, Ca, K, Mg and Na, which can be interpreted as a 

mineral component of the river water. These findings further support 

Vega et al (1998), who stated that such clustering variables point to a 
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common origin for these minerals, likely due to the dissolution of 

limestone and gypsum soils. All the possible pollutants sources have 

been summarized in Table 3. VF2, shows 9.614% of total variance with 

strong positive loadings of SS, turbidity and Fe. This VF represents the 

surface run-off source because of the variables contains. This factor 

loaded with solids indicates towards their origin in run-off from the 

fields with high load of solids and waste disposal activities. 

VF3 shows that 7.67% of strong variance has strong positive 

loadings of BOD and COD, on account of anthropogenic pollution 

sources. This first factor could be explained by considering the 

chemical components of various anthropogenic activities that constitute 

point source pollution especially from industrial, domestic, commercial 

and agricultural areas (Juahir et al. 2010a). This VF can be explained 

by the fact that high levels of dissolved organic matter and biological 

organic matter derive from agricultural activities (paddy fields) and 

industrial activities, based on observations along the Perlis River. VF4 

(6.5% of total variance) has strong positive loadings of E. coli and 

coliform. E. coli and coliform are strongly related to municipal sewage 

and waste water treatment plants along the river. 

VF5 (5.2% of total variance) has two moderate negative loadings 

of Pb and Cd. According to Laxen and Harrison (1977), the widespread 

prevalence of these pollutants noticeably come from leaded  petrol. 

Analysis of land use activities within the study area showed a ferry 

terminal was based at the mouth of the Perlis River. Ship repairs and 

maintenance activities could be the potential sources of Pb in the water 

body. Additionally, the fossil fuel combustion which occurred during 

the shipping may lead to the presence of Cd. Thus, this can be attributed 

to the shipping waste pollution. VF6 explained 5.6 % of a strong 

positive loading of temperature and a strong negative loading of DO.

Table 2 Loadings of nine varimax factors (VFS). 

Note: Values in bold indicate the variables has strong loading >0.75 and value in bold and italic indicate the moderate loading. 

VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8 VF9 

DO -0.128 -0.057 -0.261 -0.185 -0.197 -0.703 0.120 0.077 -0.122 

BOD -0.009 0.006 0.957 -0.009 -0.018 0.050 -0.029 -0.041 0.029 

COD -0.002 0.002 0.949 -0.002 0.013 0.020 -0.028 -0.003 -0.013 

SS 0.026 0.924 -0.042 0.114 0.053 0.007 0.022 -0.015 -0.046 

pH -0.075 -0.227 -0.434 -0.056 0.060 -0.229 0.540 0.230 -0.209 

NH3-NL 0.446 0.027 -0.129 0.154 0.066 0.396 -0.249 0.087 0.155 

TEMP 0.083 0.083 -0.008 0.034 -0.106 0.805 0.158 -0.022 -0.178 

COND 0.995 -0.011 -0.004 0.004 0.002 0.028 -0.005 -0.003 0.000 

SAL 0.995 -0.006 -0.003 0.004 -0.006 0.008 -0.008 -0.002 -0.006 

TUR -0.027 0.930 -0.028 0.066 0.085 0.003 0.005 0.041 -0.025 

DS 0.996 -0.009 -0.003 0.003 0.001 0.021 -0.003 -0.001 -0.002 

TS 0.995 0.027 -0.005 0.007 0.002 0.022 -0.002 -0.004 -0.002 

NO3 -0.088 0.159 -0.063 0.015 0.006 -0.028 -0.165 0.737 0.114 

Cl 0.990 0.000 -0.013 0.003 0.012 0.023 -0.030 -0.002 0.005 

PO4 -0.010 0.413 0.044 -0.063 -0.279 0.223 0.009 0.229 0.507 

As 0.444 -0.036 -0.036 -0.106 -0.196 0.183 0.371 0.235 0.156 

Hg 0.157 -0.032 0.028 -0.063 0.072 0.164 0.469 0.185 0.138 

Cd -0.035 -0.050 0.023 -0.073 0.739 0.046 -0.013 0.255 0.037 

Cr -0.021 -0.092 -0.063 0.200 -0.096 0.083 0.744 -0.284 0.058 

Pb 0.033 0.217 -0.042 -0.082 0.735 -0.012 -0.060 -0.199 0.044 

Zn 0.065 0.629 0.206 -0.181 -0.147 -0.021 -0.219 -0.037 0.216 

Ca 0.739 -0.145 0.220 0.056 -0.018 0.066 0.325 -0.110 0.069 

Fe -0.098 0.763 0.081 -0.022 -0.007 0.165 -0.188 0.062 0.139 

K 0.982 0.019 -0.015 -0.002 -0.009 0.077 0.017 0.032 0.046 

Mg 0.984 -0.020 0.010 -0.004 0.004 0.027 0.037 -0.029 -0.014 

Na 0.993 0.006 -0.013 0.006 -0.002 0.008 -0.037 -0.011 0.000 

Oil & Grease (OG) -0.033 0.016 -0.005 -0.137 -0.165 0.196 -0.056 -0.019 -0.746 

BAS -0.020 0.158 0.206 -0.119 -0.096 0.199 -0.104 -0.498 0.425 

E-coli 0.059 0.077 0.010 0.929 -0.045 0.065 0.029 0.012 0.013 

Coliform -0.035 0.026 -0.014 0.937 -0.030 0.041 0.044 0.004 0.034 

Variability (%) 29.969 9.614 7.668 6.491 5.205 5.601 4.175 3.947 4.476 

Cumulative % 29.969 39.583 47.251 53.742 58.947 64.548 68.722 72.669 77.146 
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 This factor could be attributed to the solubility of gases; the 

solubility of gases in water will decrease with increasing temperature 

(Vega et al. 2007; Shrestha and Kazama. 2007). 

VF7 (4.18% of total variance) has strong positive loading on Cr. 

Cr is a specific pollutant that provides evidence of industrial pollution 

like dyeing or paint operations. From the site survey along Perlis River, 

the main activities on this river are fishery and agriculture. Anti-fouling 

paint is used at the bottom of fishermen’s boats to prevent the build-up 

of algae and other marine life.  Therefore, the presence of Cr can be 

related to the anti-fouling paint from fishermen’s boats. VF8 shows 

3.95% of a strong positive loading of NO3, due to agricultural waste 

based on a nitrate that can be found in the Perlis River. According to 

Kazama and Yoneyama (2002), this factor represents the contribution 

of non-point source pollution from paddy fields and agricultural areas. 

In these areas, farmers use nitrogenous fertilizer, which undergoes 

nitrification processes, while the rivers receive nitrate nitrogen via 

groundwater leaching. VF9, which contributed 4.48% of total variance, 

has one strong negative loading concerning oil and grease. This VF 

represents non-point source pollution, which can be assumed to be 

related to oil waste from restaurants along the Perlis River. Fast food 

restaurants typically produce a low volume of waste water, but higher 

levels of grease and COD,  generated  by  their  daily  kitchen activities,  

for which  there  is  currently no  acceptable treatment technology.  

 
APCS-MLR 

      The 𝑅2 of the APCS-MLR model is 0.734 as shown in Table 3, 

which indicates 73.4% variability in WQI, which is explained by nine 

independent variables used in this model. The mean square error (MSE) 

and the RMSE calculates the residual errors that provide estimation of 

the mean difference between observed and modelled values of WQI. 

Based on the coefficient of determination 𝑅2 (0.734), MLR shows good 

adequacy between measured and predicted value. Although 𝑅2 is less 

than 0.75 and differs from the published study (Wu et al. 2009), the 

result are still considered as a good fit as it is more than 0.70. From 

previous discussions, the number and characteristics of possible 

pollution sources has been identified by PCA, while source 

contributions were computed using APCS-MLR, a proven effective 

approach for supplying quantitative information regarding the 

contributions of each source type (Pekey et al. 2004). The percentage 

contribution of each possible source is shown in Table 4, with VF3 

showing the highest percentage of BOD and COD. The contributions 

of BOD and COD concentrations to the Perlis River were 57.43%. The 

Perlis River is situated near the agricultural and domestic areas. This 

may be the reason for the higher contribution of this source in the Perlis 

River Basin. VF3 consists of parameters BOD and COD.  High levels 

of BOD and COD are the result of agricultural wastes that flow into 

waterways, which are broken down by microorganisms. This process 

uses oxygen that is needed by river life, including plants and fish, to 

survive. Higher BOD levels can be attributed to decaying organic 

materials, which elevate the COD level that also cause increased 

production in chemical activities by aquatic organisms. The higher 

contribution of this source suggests that agricultural and domestic 

waste should be controlled effectively in order to protect this water 

source. 

 

 
 Table 3 Goodness of fit statistic for regression of WQI 

 
R² 0.734 

Adjusted R² 0.722 

MSE 22.534 

RMSE 4.747 

AIC 651.445 

SBC 684.724 

 

 
 
 

Table 4 Percentage of contribution. 
 

Variable R² 
Diff 
R² 

MSE RMSE 
% 

contribution 

All 
Source 

0.734  22.534 4.747  

L-VF1 0.670 0.064 27.800 5.273 11.10 

L-VF2 0.721 0.013 23.555 4.853 2.34 

L-VF3 0.404 0.330 50.251 7.089 57.43 

L-VF4 0.723 0.011 23.346 4.832 1.91 

L-VF5 0.734 0.000 22.421 4.735 0 

L-VF6 0.631 0.103 31.133 5.580 17.98 

L-VF7 0.715 0.019 24.057 4.905 3.38 

L-VF8 0.732 0.002 22.588 4.753 0.35 

L-VF9 0.703 0.032 25.091 5.009 5.51 

Total  0.575      

 

 

HACA       

       HACA was performed on BOD and COD parameter to study the 

spatial variations of water monitoring stations based on their similarity 

level since APCS-MLR show VF3 has highest percentage of 

contribution in Perlis River. The level of concentration of BOD and 

COD varies with high and low concentration. High level of 

concentration implies that there is potentially high concentration level 

of BOD and COD. In contrast, low level of concentration implies that 

there is potentially low level concentration of BOD and COD in the 

monitoring stations. For Perlis River, the HACA has successfully 

grouped the stations into two clusters for each of the parameter. 

       Based on the Fig. 2, cluster 1 (P4) represents a high level of BOD 

concentration, while cluster 2 (P1, P2, P3, P5, P6, P7 P8, P9) implies a 

low level of BOD concentration. These results suggest that station P4 

should be monitored frequently as it contains a high level of BOD 

concentrations. According to Fig. 3, cluster 1 (P4) represents a high 

level of COD concentration, while cluster 2 (P1, P2, P3, P5, P6, P7, P8, 

P9) implies a low level of COD concentration. Interestingly, the COD  

dendrogram result also identified a similar stations with high COD 

concentration, namely, P4. Therefore, this station should be monitored 

from time to time in order to reduce the pollutants discharge into the 

Perlis River.   

There are several possible explanations for these results. Natural 

processes, such as precipitation inputs, erosion and weathering process, 

as well as anthropogenic activities such as industrial, commercial and 

agricultural activities, lead to increases in BOD and COD concentration 

in the river. The Perlis River is known for agricultural activities as well 

as urban activities. In general, therefore, it seems that station P4 is 

exposed to all the constant polluting sources that modify surface water 

hydrochemistry, which in turn increase the level of BOD and COD 

concentration. Thus, the station P4 should be labelled as the main spot 

for polluting sources and should be monitored frequently to reduce the 

BOD and COD concentration in the Perlis River Basin. 

 

 
 
Fig. 2 BOD dendrogram showing classified sampling sites located at 

Perlis River Basin. 
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Fig. 3  COD dendrogram showing classified sampling sites located at 
Perlis River Basin. 

x and R chart for Perlis River Basin       

       The x and R charts for BOD and COD concentration in the Perlis 

River Basin between 2003 and 2007 are presented in Figure 4. The first 

period of data analysis is referred to as a trial control limit or is known 

as the base period. The trial control limit is shown in Figure 4. Based 

on the Figure 4a, the central control limit of BOD are exceeding the 

upper control limit (UCL). In the  x chart, the central control limit at 

points 7 and 8 lies outside the control limit, suggesting a possible 

assignable cause that indicates that 8% of the mean concentrations lies 

outside the UCL. 

        In the R charts (Fig. 4b), the central control limit of BOD at points 

1, 7 and 8 exceeded the control limits. Three out of 25 points, which 

indicate that 12% of the mean observations lie outside the control limit 

in the range chart describing the variation in concentration, are not 

stable. From this result, it can be suggested that the process is not stable 

for BOD concentrations. Besterfield (2009) stated that most processes 

are not in control when analyzed for the first time. According to Maurer 

(1999), the natural processes are commonly characterized by large 

variations. When natural processes are coupled with anthropogenic 

activities, the potential for variation and fluctuation may increase even 

more as stated by the rule violation (Maurer et al. 1999). Therefore, the 

out of control point should be discarded to get a desirable control limits.  

The revised control chart is computed by removing all the out-of-

control points from the data. In Figure 5a, x chart shows the Upper 

Control Limit (UCL) with the value of 4.0762, Lower Control Limit 

(LCL), 0.8179 and the central limit of 2.4471. Meanwhile in R chart 

(Fig 5b) the value of UCL is 5.9689, LCL is 0.0 and the central limit is 

2.8235. The revised control charts shows no out of control points 

outside the control limits area (Fig. 5). This control chart indicates that 

the process is in good control. Therefore, the control charts can be 

selected as the representative for the whole process to make the future 

prediction and measure the risk of pollution. The revised control limit 

that is established is used for BOD concentration data. The UCL of 

4.0762 and LCL of 0.8179 are used. Two mean observations from the 

other BOD concentration data subgroup are added to the process in 

order to determine whether the process is stable or not. This is to ensure 

that the constructed revised control limit can determine whether the 

process for the other subgroup data is stable or unstable. Based on Fig. 

5, when the two observations are added to the process, the x charts (Fig. 

6a) shows that point 27 is lies below the LCL which can be considered 

as one of the out-of-control points. However, in the range chart (Fig. 

6b), there are no out-of-control points that lies beyond the control 

limits.  Although there is a variation within control limits, it is still 

considered as a natural variation of the process. This signifies that the 

mean concentration of BOD in the Perlis River is in the control process. 

        The x  and R chart for trial control limit is shown in Figure 7.The 

x chart (Fig. 7a) showed that COD concentration at points 7 and 8 

exceeded the control limit, which suggests a possible assignable cause 

that indicates that 8% of the mean concentrations lies outside the UCL.  

In the R charts (Fig. 7b), the mean concentration of COD at points 1, 7 

and 8 exceeded the control limits. Three out of 25 points, which indicate 

that 12% of the mean observations lie outside the control limit in the 

range chart describing the variation in the concentration, are not stable. 

From this result, it can be suggested that the process is not stable for 

COD concentrations. Therefore, the out-of-control point should be 

discarded in order to obtain desirable control limits. Fig. 8 presents 

revised control charts following the removal of out-of-control points. 

The revised control charts (Fig. 8) shows no out of control points 

outside the control limits’ area. This indicates that the process is under 

good control. Therefore, the control charts can be regarded as 

representative of the whole process for the purpose of making future 

predictions and measuring the risk of COD concentration in causing 

pollution. In Fig. 8a, x chart shows the UCL with the value of 44.335, 

LCL, 15.689 and the central limit of 30.012. In R chart (Fig. 8b) the 

value of UCL is 52.477, LCL is 0.0 and the central limit is 24.824. 

Based on the analysis, it can be seen that all the points in the x chart 

were lying in the range. Thus, the controls limits can be selected as 

representative of the whole process because it shows that there are no 

out-of-control point lyng outside the control limits, thereby indicating 

that the process is stable. The revised control limit that is established is 

used for COD concentration data. This attempt was made using the 

revised control limit that was constructed, as shown in Fig. 9. A UCL 

of 44.335, a LCL of 15.669 and a central limit of 30.012 were used. 

Two mean observations from the other COD concentration data 

subgroup were monitored to determine the stability of the process. 

Based on Fig. 9, when the two observations are added to the process, x
and R charts respectively shows all the points’ lies between UCL and 

LCL. This signifies that the mean concentration of COD concentrations 

in the Perlis River is in the control process. 

Process Capability Indices 
       Data concentration of BOD is found to be within the Upper 

Specification Limit (USL) and Lower Specification Limit (LSL), with 

only natural variation occurring. This process is considered to be under 

statistical control or in a stable process. Therefore, the process 

performance can be predicted by process capability analysis. The 

inherent variability of the process is compared with the specification 

limits in the process capability analysis, such that the environmental 

performance potential can be detected under normal or in control 

conditions (Corbett and Pan, 2002). Based on Fig. 10, the capability 

index (Cp) has been calculated by using the capability analysis to 

measure the risk of BOD to environment. Cp is used to measure the 

potential risk of BOD concentration in terms of water pollution. The Cp 

value is found to be 0.5498 (<1). This shows that the potential risk of 

BOD concentration in terms of unacceptable water pollution is higher. 

Based on Fig. 11, the capability index Cp for COD is less than   1.00 

which is 0.5141. These indicate the potential risk of COD concentration 

for unacceptable water pollution is also higher. Thus, this result implies 

that the process is not suitable in the subsequent significant period of 

time. This suggests that continuous monitoring should be undertaken 

by DOE from time to time to ensure that the level of BOD concentration 

complies with the specification limits that have been set up, namely, a 

USL is 6mg/l and an LSL is 1mg/l, while COD concentration 

corresponds to a USL of 50 mg/l and an LSL of 10 mg/l. This 

specification limit is referred to the NWQS which has been set up by 

DOE. 

        This finding concurs with Corbett and Pan (2002), who stated that 

process capability analysis can help a regulator to decide where to 

allocate scarce monitoring and audit resources, as well as assist decision 

makers to assess whether the process is capable of complying with 

existing environmental legislation over a sufficiently large proportion 

of time. Therefore, in this analysis, process capability shows that the 

process is not suitable over the subsequent large period of time. 

CONCLUSION 

The results from this study show that PCA extracted nine PCs with 

eigenvalues greater than one, explaining about 77.15% of the total 
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variance in the water-quality data set. These pollutants are thought to 

come from mineral components, surface runoff, industrial and 

anthropogenic waste, sewage, anti-fouling paint (fishery waste), 

seasonal changes, agricultural waste, food waste and shipping waste. 

The APCS-MLR model discovered BOD and COD as the main 

parameters that indicates the measure of agricultural pollution in the 

Perlis River Basin. According to the HACA, 11 monitoring stations 

assembled into two clusters were in accordance with similarities in the 

concentration of BOD and COD. According to the HACA results, BOD 

and COD were grouped in P4. Next, preventive measures were taken 

by establishing the control charts for BOD and COD in order to monitor 

the level of concentration in a timely manner, such that the limit of the 

concentration level is not exceeded. The results from the control charts 

show that the mean concentration of BOD and COD in P4 is in the 

control process. Process Capability Indices were then applied to 

measure the risk of the concentration in terms of river pollution over a 

subsequent period of time using the specification limit NWQS. 

However, both concentration of BOD and COD indicated a high risk of 

unacceptable levels in the water.  

Hence, it is recommended that the related agencies should take 

actions to control all these sources of pollution in order to improve the 

water quality in these basins. Laws and regulations can be enforced in 

a much stricter way to make sure there is no any abuse of the 

environment. Furthermore, it is recommended that the DOE monitors 

several significant parameters that contribute to river pollution in these 

basins, instead of the current number of 30 water quality parameters. 

The parameters which showed they significantly impacted the water 

quality in the Perlis River through the data analysis can be used as a 

reference by the DOE in determining which parameters should be 

monitored at the monitoring stations. Lastly, it should be stated that 

protecting our precious natural resources, such as rivers, starts with the 

individual. Individuals have to play their role in protecting rivers. 

Various campaigns have been undertaken by the government to protect 

and rehabilitate rivers, such as the one state one river campaign, and 

such initiatives will only be successful if the public do their part.  

Formal education about environmental issues should also be promoted 

at school level in order to inculcate students with a better understanding 

of the importance of protecting the environment.  
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Fig 4-6 Trial, revised and monitoring of BOD concentration. 

 

Fig. 7-9. Trial, revised and monitoring of COD concentration 
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