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Abstract 

The effect of Hall current, radiation and chemical reaction on MHD free convective flow past an 
impulsively started vertical plate through a porous medium in a rotating system is considered. The 
analytical solutions of dimensionless governing equations are obtained by Laplace transform 
technique. The effects of various parameters on the fluid velocity, concentration and temperature 
distribution near the plate are analyzed and shown graphically. The numerical values of shear stress 
at the plate are shown in a table. It is observed that the fluid velocity near the plate is affected 
significantly by Hall current, radiation, chemical reaction and porous medium. The conclusion of 
the study have great applications in the field of science and engineering.  
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INTRODUCTION 

The application of MHD viscous incompressible fluid flow 

through porous medium involving radiative heat transfer under the 
influence of chemical reaction among various species have great 

importance in many areas of science and engineering. Stewartson [1, 

2] has studied the related problems to understand the behavior of the 

fluids in an unsteady boundary layer. His study was completely based 
on the boundary layer equations.  The influence of magnetic field on 

such a flow within a porous and non-porous medium with radiative 

heat transfer has a great significance in the designing of heat 

exchangers, MHD pumps, MHD generator, nuclear reactors, oil 
exploration, space vehicle propulsion etc. In recent years due to the 

importance of the study, considerable progress has been made to the 

study of thermophysical properties affecting MHD boundary layer 

flow. The MHD flow of a uniformly stretched vertical permeable 
surface in the presence of heat generation/absorption and chemical 

reaction was studied by Chamka [3]. He solved the problem 

analytically and observed that the Prandlt number, Schmidt number 

and the strength of magnetic field retard the fluid velocity. Also, the 
radiation and mass transfer effects on two-dimensional flow past an 

impulsively started infinite vertical plate was studied by Prasad et al. 

[4]. The governing equations used by Prasad et al. [4] were solved 
using a finite-difference method. They [4] observed that when the 

radiation parameter increases, the velocity and temperature decrease 

in the boundary layer. Ibrahim and Makinde [5] has studied the 

radiation effect on chemically reacting MHD boundary layer flow of 
heat and mass transfer through a porous vertical flat plate and solved 

the problem numerically using shooting technique with the fourth 

order Runge-Kutta integration scheme. Makinde and Mhone [6] 

analyzed the effects of a transverse magnetic field and radiative heat 
transfer to unsteady flow of a conducting optically thin fluid through a 

channel filled with saturated porous medium and non-uniform wall 

temperature. They [6] solved the problem analytically and used to 
compute the rate of heat transfer and shear stress at the wall. Further, 

Reddy [7] worked on heat and mass transfer effects on the unsteady 

MHD radiative flow of a chemically reacting fluid past an impulsively 

started vertical plate. He [7] observed that the presence of chemical 
reaction retards the fluid velocity, decreases the concentration and 

increases the thermal boundary layer thickness. 

However, if the strength of applied magnetic field is very strong, 

the effect of Hall current is also significant. Also, the rotating flow of 
viscous, incompressible and electrically conducting fluid has attracted 

the attention of researchers due to their abundant geophysical and 

astrophysical applications. It is well known that a number of 

astronomical bodies possess fluid interiors and magnetic fields. 
Therefore many scholars have studied such models, for instance, 

Mazumdar et al. [8] worked on flow with heat transfer in the 

hydrodynamic Ekman layer on a porous plate with Hall effects. 

Further, Agarwal et al. [9] analyzed the combined influence of 
dissipation and Hall effect on free convective flow in a rotating fluid. 

It was observed by [9] that the primary and secondary shear-stresses 

increases and decreases, respectively, with the increase in magnetic 

field and Hall parameters. Also, the work on oscillating vertical plate 
embedded in a porous medium with radiative heat and mass transfer is 

done by Kishore et al. [10].  

Influenced by the above-discussed literature and applications, the 
model under consideration analyzes the MHD free convective flow 

past an impulsively started vertical plate through a porous medium 

with radiative heat transfer and chemical reaction in a rotating system. 

The problem is solved analytically using the Laplace transform 
technique. The relevant set of graphical results illustrating the effects 

of various parameters involved in the problem is presented and 

discussed. The numerical values of skin-friction have been tabulated. 

RESEARCH ARTICLE 



Rajput and Shareef / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 2 (2019) 237-242  

238 

MATHEMATICAL FORMULATION 

Consider an unsteady flow of a viscous, incompressible, 

electrically conducting fluid past an impulsively started vertical 

infinite non-conducting flat plate in a porous medium. Further we 

assume that a homogeneous chemical reaction of first order between 

the diffusing species and the fluid take place at a constant rate oK . 

Let 'x  axis be chosen vertically upward along the motion of plate 

and the z' axis normal to the plate. The fluid and the plate rotate as a 

rigid body with a constant angular velocity ' about z' axis. A 

uniform magnetic field oB is applied at an angle  from the plate as 

shown in the Fig. 1. The fluid is assumed to be electrically conducting 

whose magnetic Reynolds number is very small, so the induced 
magnetic field produced by fluid motion is negligible in comparison 

to the applied one; hence (0,0, ).o BB As there is applied and 

polarization voltage are assumed to be absent, therefore electric 

field (0,0,0). E As the plate is of infinite extent, so all the physical 

variables depends only on z' and 't .  

                                              

Fig. 1 Geometry of the model 

Initially, at the  time ' 0,t  the fluid and the plate are at rest and 

at a uniform temperature and concentration oT and oC respectively. 

At the time ' 0t  , the plate starts moving with a constant 

velocity ou in vertically upward direction and the temperature and 

concentration of the plate are  raised to 
pT and 

pC respectively. Here 

the impulsive movement of the plate and free convection causes the 

fluid motion. From the equation of conservation of electric 

charge . 0,  J we have 'zJ  constant, where ' ' '( , , )x y z J J JJ   

is the current density vector. Since the plate is assumed to be non-

conducting therefore at the plate ' 0.zJ  Thus, everywhere in the fluid 

' 0zJ  . Here the continuity equation identically becomes zero.  So, 

under the above assumptions, the governing equations with 

Boussinesq’s approximation and radiative heat transfer are as 

follows:  
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The boundary conditions taken are as under:   
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Taking Hall current into account and neglecting the electron 

pressure gradient, the ion slip and the thermo-electric effects, the 
generalized Ohm’s law can be written as  
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By using Rosseland approximation (Brewster [11]), the radiative heat 

flux (r)q is given by 
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Here the symbols used are: T  temperature of the fluid, 

C  concentration of the fluid, oB  external magnetic field,  

Angle of inclination of B with x' axis, 'u  primary velocity of the 

fluid, 'v  secondary velocity of the fluid,  'K  permeability 

parameter,    volumetric coefficient of thermal expansion,
 

*  volumetric coefficient of concentration expansion, D  mass 

diffusion coefficient,  
(r)q  radiative heat flux,   thermal 

diffusivity, ek  mean absorption coefficient, e  cyclotron 

frequency of electron,
 e  electron collision time,

 
g  acceleration 

due to gravity,   density of fluid,  kinematic viscosity, 

s  Stefan-Boltzmann constant, ( )e em   Hall parameter, 

'xJ  current density along 'x  axis and 
'yJ  current density along 

'y  axis. 

If temperature difference within the flow is sufficiently small, then 

expanding 
4'T by using Taylor series about oT (neglecting higher 

order terms), we get, 

                                           
4 3 44 3 .o oT T T T                           (8) 

By using (7) and (8), (3) reduces to             
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To obtain the equations in dimensionless form, the following non-

dimensional quantities are introduced:     
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Here u is dimensionless primary velocity of the fluid, 

v dimensionless secondary velocity of the fluid, z  dimensionless 

spatial coordinate normal to the plate,   dimensionless 

concentration of the fluid,   dimensionless temperature of the fluid, 

rP  Prandlt number, cS  Scthimth  number
 rG  Thermal Grashof 

number, mG Mass Grashof number, t  dimensionless time, 

N Radiation parameter,  dimensionless rotation parameter and 

M magnetic field parameter. 
Using equation (10), equations (1), (2), (4), (9) and (5) 

respectively, become: 
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To solve above system, assume u iv V . Then using equations 

(11) and (12), we get, 
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The boundary conditions (15) are transformed: 
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The governing non-dimensional partial differential equations (16), 
(14) and (13) subject to the above boundary conditions prescribed in 

equation (17) are solved using the Laplace Transform technique.  

The solution of the model is as below:      
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The dimensionless skin-friction components x and 
y are obtained as: 
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RESULTS AND DISCUSSION 

In order to explain the significance of the study a representative 

set of numerical results is shown graphically in Fig. 2 to 17. It is 

noticed from Fig. 2 to 11 that magnitudes of primary velocity u and 

secondary velocity v attain distinctive maximum values near the 
surface of the plate and then start decreasing. Fig. 4 and 5 show the 

effect of buoyancy force on the velocity where we observe that both 

the components of the velocity get increased by thermal Grashof 

number and mass Grashof number. From Fig. 6 and 7, it is observed 
that on increasing the permeability parameter K of the porous 

medium, both the components of velocity increase. It validates that an 

increase in K  implies a decrease in the resistance of the porous 

medium resulting in accelerating  primary and secondaey velocities. 
Effect of Hall current on flow behavior can be seen from Fig. 8 and 9. 

Here we see that on increasing the Hall current parameter m, the 

primary velocity increases rapidly near the plate whereas secondary 

velocity decreases throughout the boundary layer region. This shows 
that Hall current tends to accelerate primary velocity in the region 

near the surface of the plate whereas it tends to retard secondary 

velocity throughout the boundary layer region. Fig. 10 and 11 show 

the effect of radiation parameter N on both components of velocity, 
here it is observed that it retards the flow. Also, the temperature of the 

fluid decreases with radiation parameter (Fig. 12). Hence we conclude 

that an increase in the value of radiation parameter, both the 

momentum and thermal boundary layer thicknesses decrease. The 

effect of chemical reaction parameter 
rc on the primary velocity, 

secondary velocity and concentration are shown in Fig. 2, 3 and 15 
respectively. From the Fig. 1 and 15, we observe that both the 

components of velocity and concentration decrease with 0rc  . In 

Fig. 16, it can be seen that the concentration of the fluid is inversely 

proportional to the value of Schmidt number
cS . Thus, the increase 

in
cS reduces the concentration in the system. A similar effect can be 

seen for  temperature profile with Prandlt number 
rP (Fig. 13). Also 

concentration and temperature boundary layer increase with time (Fig.  
14 and 17). 

The effects of various parameters on the skin-friction are shown in 

Table-1. It is found from table-1, that the value of x increases when 

the values of M, N,  and rc are increased (keeping other parameters 

fixed) but if the value of m is increased, it gets decreased. Also, it is 
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observed that magnitude of y increases with M and  . And it 

decreases when m, 
rc and N are increased. 

         
Fig. 2  u for different values of cr. 

Fig. 3  v for different values of cr. 

     
Fig. 4  u for different values of Gr and Gm. 

Fig.5  v for different values of Gr and Gm. 

   
Fig.6  u for different values of K. 

Fig. 7  v for different values of K. 

         
Fig.8  u for different values of m. 

Fig. 9  v for different values of m. 
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Fig. 10  u for different values of N. 

Fig. 11  v for different values of N. 

     
Fig. 12  θ for different values of N. 

Fig.13  θ for different values of Pr. 

      
Fig. 14  θ for different values of t. 

Fig. 15  ϕ for different values of cr .    

Fig. 16  ϕ for different values of Sc. 

  Fig.17  ϕ for different values of t. 
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Table 1  Skin friction for different parameters. 
 

 
( 0.71,  S 2.01,  0.2,  K 0.5,  5,  G 5,  0.5)P t Gr c r m         

m M cr

 
N   

x  y  

1.5 2 2 0.5 45o 1.5473 0.4248 

2.5 2 2 0.5 45o 1.4666 0.3811 

2 4 2 0.5 45o 1.8355 0.8660 

2 6 2 0.5 45o 2.4250 1.4674 

2 2 1 0.5 45o 1.4940 0.4030 

2 2 3 0.5 45o 1.4995 0.4027 

2 2 2 1 45o 1.5116 0.4015 

2 2 2 2 45o 1.5233 0.4005 

2 2 2 0.5 30o 1.4436 0.3175 

2 2 2 0.5 60o 1.5512 0.4858 

 

 
CONCLUSION 

 

It is found that Hall current has a tendency to accelerate the 
primary velocity whereas it retards the secondary velocity. When the 

radiation parameter increases, the velocity and temperature decrease 

in the boundary layer. The skin friction increases with the increase in 

radiation parameter. The effects of chemical reaction and radiation 
parameter are similar on the flow. Further it is seen that the flow in 

both the directions is accelerated by increasing the porosity of the 

medium. It is as per the expectation of the flow.  
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