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GRAPHICAL ABSTRACT 

ABSTRACT 

The combined effects of heat and mass transfer on unsteady magnetohydrodynamic (MHD) free 
convection flow in a porous medium past an infinite inclined plate with ramped wall temperature have 
been investigated. The closed form analytical solutions have been obtained for the velocity, temperature 
and concentration fields by using Laplace transforms method. The analytical expressions for non-
dimensional skin-friction, Nusselt number and Sherwood number have been computed.  The effects of the 
embedded flow parameters such as inclination angle, radiation parameter, magnetic field parameter, and 
Grashof number on flow fields are shown graphically. It is found that increasing the inclination angle and 
radiation parameters, the fluid velocity along an inclined plate will be decreased.  
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1. INTRODUCTION 

The study of MHD natural convection flows in 
porous medium has been conducted extensively in recent 
years. Several solutions in this case were obtained by [1-9], 
where different initial boundary conditions have been 
considered as well as physical situation of flow formation.  
When free convection flows occur at high temperature, 
radiation and thermal source effects on the flow become 
significant. Many processes in engineering fields happens 
at high temperatures, such as cooling radioactive waste 
containers, energy efficient drying processes, food 
processing, grain storage, and solar power collectors, and 
understanding of radiative heat transfer become very 
essential for the design of the related equipment. Rajesh 
[10] used Laplace transforms to study the effects of thermal 
radiation on the unsteady MHD free convection flow of a 
viscous incompressible fluid past an infinite vertical plate 
containing a ramped type temperature profile. Seth et al. 
[11] studied the influence of radiation on unsteady 
hydromagnetic natural convection transient flow near an 
impulsively moving vertical flat plate with ramped wall 
temperature. Samiulhaq et al. [12] investigated the MHD 
free convection flow in a porous medium with thermal 
diffusion and ramped wall temperature. Phillips et al. [13] 
analytically solved the effects of heat source on MHD free 

convection flow past a vertical plate through porous  
medium.  Recently,   Jana  et al.  [14]   reported  the effect 
of radiation on the MHD flow past a vertical plate with 
oscillatory ramped plate temperature in a presence of a 
uniform transverse applied magnetic field. 

However in real applications, the flows are not only 
occuring near vertical or horizontal plate, but also happen 
near to the inclined plates or surfaces. Ganesan and Palani 
[15] used finite different analysis to study the unsteady 
natural convection flow past an inclined plate with variable 
surface heat and mass flux. Thermal radiation effects on 
MHD flow past a semi-infinite inclined plate in the 
presence of mass diffusion was presented by [16]. Sharma 
and Singh [17] analysed the effects of variable thermal 
conductivity, viscous dissipation on steady MHD free 
convection flow of low Prandtl fluid on an inclined porous 
plate with Ohmic heating. They solved the problem 
numerically by using Runge-Kutta fourth order method and 
shooting technique. Narahari [18] took into account the 
effect of thermal radiation on unsteady MHD free 
convection flow of an optically thin gray gas past an 
infinite inclined plate with constant temperature. 

The aim of this paper is to investigate the effects of 
mass diffusion and radiation on MHD free convection flow 
in a porous medium past an infinite inclined plate with 
ramped wall temperature. 
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2. PROBLEM FORMULATION  
 

Consider the unsteady MHD of a viscous 
incompressible fluid with combined heat and mass transfer 
by natural convection flow, near an infinite inclined plate 
embedded in a saturated porous medium. The x*-axis is 
along to the plate with the inclination angle ϕ to the 
vertical, the y*- axis is taken normal to the plate. The plate 
is assumed to be electrically conducting with a uniform 
magnetic field B of strength B0, applied in a direction 
perpendicular to the plate. The magnetic Reynolds number 
is assumed to be small to neglect the effect of applied 
magnetic field. The radiation effect is also taken into 

account. Initially, for time 0* t , both the fluid and the 

plate are at rest with the constant temperature *
T  and 

constant concentration *
C . At a time 0* t , the plate 

starts moving in x* direction with a constant velocity ou . 

The temperature of the plate is raised or lowered to 
  ow ttTTT /****

   when ott *
. Thereafter, it is 

maintained at constant temperature *
wT  when  ott * . The 

concentration is raised to constant concentration *
wC . The 

flow is assumed laminar, and the effects of the convective 
and pressure gradient terms in the momentum, energy and 
concentration equations are neglected. The physical 

variables become functions of the time *t  and the space 
*y  only, as a result of the boundary layer approximations.  

Under the Boussinesq approximation, the unsteady 
MHD natural convection boundary layer flow past an 
inclined plate flow in a porous medium with effects of 
thermal diffusion and heat absorption, is governed by the 
equations 
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with the following initial and boundary conditions 
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where *T  and *C  denote the temperature and 

concentration respectively, υ is the kinematic viscosity,   
is the electrical conductivity of the fluid,   is the fluid 

density, 0* K  is the permeability of the porous medium, 

g is the acceleration due to gravity, T  and c  are the 

thermal expansion and concentration expansion, k  is the 

fluid thermal diffusivity, pc  is the specific heat, rq  is the 

radiative heat flux and D is the mass diffusion. It is 
assumed that the radiative heat flux term is produced by 

plates temperature *
T  and *

wT
 

and simplified by using 

Rosseland approximation is given by 
 

 4*4**4 
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where   is the mean radiation absorption coefficient and 

*  is the Stefan-Boltzmann constant. We assume that the 
temperature differences within the flow are sufficiently 

small such that 4*T  may be expressed as a linear function 

of the temperature. Using Taylor series by expanding 4*T  

about *
T  and neglecting higher-order terms, thus 
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Using (5) and (6), (2) now becomes  
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Introducing the following dimensionless variables: 
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Here, T, C, M, K , Gr, Gc, Pr, R and Sc are nondimensional 
fluid temperature, nondimensional fluid concentration, 
magnetic parameter known as Hartmann number, porosity 
parameter, thermal Grashof number and the mass Grashof 
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number, Prandtl number, radiation parameter and Schmidt 
number, respectively. 

Using equations (8), equations (1), (3), and (7) can 
be expressed as 
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The initial and boundary conditions given by equation (4) 
now become 
 

0 CTu   for 0y  and 0t  
1,0  Cu      for 0y  and 0t  

,tT                for 0y  and 10  t                           (12)  

,1T              for 0y  and 1t  

0,, CTu     for y  and 0t  
 

3. PROBLEM SOLUTION 
 
We can see that the energy equation (10) and 

concentration equation (11) is uncoupled from the 
momentum equation (9). Therefore, we can solve for the 
temperature variable  tyT ,  and concentration variable 

 tyC ,  whereupon the solution of  tyu ,  can also be 

gained. In order to solve these equations, taking Laplace 
transforms of equations (11), (10) and (9) with respect to t
, in concurrence with equation (12), and solving the result 
from differential equations, we obtain 
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The exact solutions for the concentration, temperature and 
complex velocity fields can be obtained from equations 
(12), (13) and (14) by using inverse Laplace transforms. 
These solutions are 
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erfc(x) being the complimentary error function defined by 
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and  H  is Heaviside unit step function. 

 
 
3.1 Skin friction, Nusselt number and Sherwood number 
 

The expression of skin friction is given by  
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With 
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Nusselt number, the rate of heat transfer is given by 
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and Sherwood number, the rate of mass transfer is given by 
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4. GRAPHICAL RESULTS AND DISCUSSION 
 
 An exact solution to the problem of heat and mass 
transfer for MHD free convection flow with radiation effect 
passing through a porous medium near an inclined plate 
with wall ramped temperature is presented. In order to get 
into the physical insight of the problem, the effects of 
various parameters such as inclination angle ϕ, radiation 
parameter R, Hartmann number M, thermal Grashof 
number Gr, and concentration Grashof number Gc are 
analysed. The results for concentration C, temperature T, 
and velocity u are presented graphically and discussed. 
 In Figure 1 shows the velocity profiles at various 
values of inclination angle ϕ. It is noted that decreasing the 
inclination angle accelerates the fluid motion along the 
plate. This is towards the fact that as the plate is inclined 
from the vertical the buoyancy force effect due to the 
thermal and mass diffusion decreases as cos ϕ decreases. In 
this case, lower buoyancy for the same temperature 
difference occurs at ϕ = 90o, because cos ϕ increases as ϕ 
decreases from 90o to 0o. Figure 2 depicts the effect of 
velocity profiles at various radiations R. It is observed that 
the fluid velocity increase as the radiation parameter 
decrease. The reason is the rate of transportation energy to 
the fluid increases as the radiation parameter decreases and 
thereby the fluid velocity increases. 
  

 
Fig. 1 Velocity profiles for various angle 
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 The variation of velocity for different values of 
Hartmann number M is plotted in Figure 3. We can see that 
the application of transverse magnetic field will result a 
resistive type force namely the Lorentz force. This force 
tends to resist the fluid flow and thus reducing its velocity. 
It is appealing to note from all the graphs for the velocity 
profiles that velocity of the fluid is zero at y = 0, increases 
continuously with increasing distance from the plate 
vicinity, approaches a maximum value in the middle of the 
flow regime and then decreases continuously with 
increasing distance from the plate. Finally, when y tends to 
infinity, velocity goes to zero. 
  
 

 
Fig. 2 Velocity profiles for various R 

 

 
Fig. 3 Velocity profiles for various M 

 

 
Fig. 4 Velocity profiles for various Gc 

 

 The velocity profiles at various Gc and Gr is shown 
in Figure 4 and Figure 5. We analysed that the velocity 
decreases as the Grashof number decreases. Decreasing 
Grashof number means decreasing thermal buoyancy force 
and thereby velocity of the fluid decreases in the vicinity of 
the inclined plate. A similar behaviour of velocity was also 
expected in the presence of the imposed boundary 
conditions on velocity in equation (11). Hence, all these 
graphical results provide a useful mathematical cross 
checking to the calculation. Therefore, we are quite sure at 
the accuracy of the solution. 
 
 

 
Fig. 5 Velocity profiles for various Gr 

 
 

5. CONCLUSION  
 
 In this paper, we have studied the governing 
equations for the double diffusion and radiation effects on 
unsteady MHD free convection flow passing through a 
porous channel past an infinite inclined plate with ramped 
wall temperature. Exact solution using Laplace transforms 
for the concentration, temperature and velocity profiles 
with the effects of embedded parameters are examined. It is 
reported that the velocity of a fluid is increases with the 
decreases of ϕ, R and M. However, the effects of Gc and Gr 
on the velocity are opposite to ϕ, R and M. 
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