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Abstract 

Heat transfer on an unsteady free convection rotating second grade fluid flow, which is flowing through 
an accelerated plate, is analyzed. The physical problem investigated is described by a coupled, linear 
system of partial differential equations, with appropriate boundary conditions. Laplace transform 
technique is applied to determine the analytical solutions of the dimensionless governing equations. 
The effects of various embedded parameters to the velocity and temperature distribution in the fluid 
are graphically illustrated and analyzed. The obtained analytical results constitute a good verification 
to verify a more advance situation of the physical problem, which is described by a non-linear system 
and only can be solved by using approximation method.  
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INTRODUCTION 

The investigation of non-Newtonian fluids have received 

considerable attention due to the wide application in industry, 

geophysics and engineering. Unlike the Newtonian fluids, numerous 

models have been developed for these fluids because there is no single 

model which completely explains all the properties of non-Newtonian 

fluids (Hayat 2004, 2008, Khan 2010,). Thus, the fluids have been 

mainly classified under the differential, rate and integral types (Faisal 

2013). Due to the non-linear dependence, the analysis of the behaviour 

of fluid motion of non-Newtonian fluids offer mathematicians, 

engineers, and numerical specialists varied challenges, and they are 

developing appropriate analytical and numerical solutions. One of the 

most popular models for non-Newtonian fluids is second grade fluid. 

Second grade fluid is the non-Newtonian viscoelastic fluid and 

commonly used in food mixing and chime movement in the intestine, 

polymer solutions, paint, flow of plasma, flow of blood, flow of nuclear 

fuel slurries, the flow of liquid metals and alloys, flow of mercury 

amalgams, and lubrications with heavy oils and greases (Imran 2014, 

Azhar 2015). The second grade model is chosen in present study 

because it can reasonably hope to obtain exact solutions of the model. 

It is essentials as providing a standard for checking the accuracies of 

many approximate solutions which obtained numerically or 

empirically. Moreover, they can also be applied to verify numerical 

schemes that are developed for studying more complicate flow 

problems.  

Furthermore, the free convection flow in a rotating medium is also 

important due to its application in many areas of geophysics, 

astrophysics and fluid engineering Ismail (2015). Studies show that the 

flow in the earth’s liquid core is significantly affected by the Coriolis 

force due to earth’s rotation. Ismail (2015) studied the unsteady MHD 

free convection flow of a second grade fluid in an infinite inclined plate 

with a rotating effects. The authors determined an exact solution for the 

problem and found that the thickness of the boundary layer decreases if 

the second grade parameter increases. Recently, Mohamad (2016) 

investigated the unsteady free convection flow of rotating second grade 

fluids over an oscillating plate. To the best of our knowledge, no 

literature exists in which accelerated free convection flows of non-

Newtonian fluids in rotating frame have been studied.  

Fig. 1  Physcial diagram and coordinate system. 
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Therefore the aim of the present work is to investigate the rotating 

and accelerated free convection flows in a second grade fluid. All the 

governing partial differential equations have been solved using Laplace 

transform. The influence of second grade parameters and rotation 

effects on the accelerated convection flow are graphically presented 

and analysed. 

MATHEMATICAL FORMULATION AND SOLUTION 

Formulation 
Consider the unsteady incompressible second grade fluid bounded 

by a rigid moved plate z = 0. The z-axis is taken normal to the plate. 

Initially, both the plate and fluid are at rest with constant temperature 

T∞. At time t = 0+, the plate starts to move with a constant acceleration 

A. After that, the fluid starts solid body rotation with constant angular 

velocity Ω parallel to z-axis. The dimensional governing momentum 

and energy equations are 
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in which F = u + iv is the complex veloity where u and v are primary 

and secondary velocities respectively, ρ is the fluid desity, υ is the 

kinematic viscosity, α1 is the second grade parameter, g is the 

acceleration due to gravity, β is the volumetric coefficient of thermal 

expansion, T is the temperature of the fluid, k is the thermal 

conductivity and cp is the specific heat capacity of the fluid at constant 

pressure. The dimensional initial and boundary conditions are 
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The non-dimensionl variables are defined as 
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Solution 

Substituting Eq. (5) into Eq. (1–4), then obtained non-dimensional 

equations as follow (dropping out the * notation) 
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where the parameters involved in this study are 
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α is the second grade parameter, ω is the rotation parameter, Gr is the 

Grashof number and Pr is the Prandtl number. To solve Eq. (6) and Eq. 

(7) along with initial and boundary conditions (8) and (9), Laplace 

transform tehcnique has been used. The transformed Eqs. (6) and (7) 

with conditions (8) and (9) in q-domain are 
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Characteristics equation for non-homogenous and homogenous 

differential equations will be used to solve Eqs. (11) and (13). Solution 

for Eq. (13) is 

     1 2, exp Pr exp PrT z q c z q c z q   (15) 

and using boundary conditions (14), the result is 
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Substitute Eq. (16) into Eq. (11), given the solution as 

     , , , ,h pF z q F z q F z q  (17) 

where 

  3 1 4 1
1 1

2 2
, exp exph

q i q i
F z q c z a c z a

q a q a

     
     

       

(18) 

and 

 5

2
6 7

( , ) exp Pr .  
  
 

p

a
F z q z q

q q a q a
(19) 

In order to solve the function (17) subjected to functions (18) and (19), 

applied the boundary condition into these functions and written as 
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Here, separated function (20) into two parts of function, which are 
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Then, the inverse Laplace tranform of Eq. (16) and Eqs. (21 – 23) are 
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Here, the involved constant parameters are 
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RESULTS AND DISCUSSION 

In this study, the analytical solutions of velocity and temperature 

for the rotating second grade fluid past an accelerated plate are obtained 

using Laplace transform technique as shown in Eqs. (24 - 29). The 

results for velocity and temperature profiles are presented graphically 

to support the present analytical solutions where the effects of the 

second grade fluid parameter α, Grashof number Gr, rotation parameter 

ω, time parameter t and Prandtl number Pr on temperature T profile are 

observed. For this purpose, Figs. (3-7) have been plotted for the case of 

constant acceleration of the plate. In order to check the accuracy of the 

present solution, the validation result has been plotted and discussed in 

Fig. 2. It is found that, the present solution (25) when Gr = 0 and Pr 

0 was identical with Khan (2010) when magnetic parameter M = 0 and 

posority effect K  0. Hence, the accuracy for validation of the present 

solution is confirmed.  

Fig. 3 shows the effect of α on the primary and secondary velocities. 

It is found that, the primary velocity increases while the secondary 

velocity first increases and the decreases when α is increased. In the 

Fig. 4, it is noted that an increase in Gr increasess the velocity profile 

monotonically for both primary and secondary velocities. This is in 

accordance with the fact that Grashof number will enhance the 

bouyance force of the flow and causes the velocity to move faster. It is 

obvious to see that for larger values of ω, the primary velocity is 

decreasing but quite opposite behavior was observed for the secondary 

velocity like in Fig. 5. The effect of parameter t on the flow is also 

discussed in this problem in Fig. 6. As anticipated, an increase t on 

velocity profiles will causes them to increase due to increase in energy 

transfered. Lastly, the behavior of Prandtl number on temperature 

profiles has been plotted in Fig. 7 where the velocity decreases when 

the values of Pr increases. This is because, the larger values of Pr, the 

larger viscous force in fluid flow. Therefore, it will reduce the velocity 

of the fluid. 

Fig. 2  Validation profiles for present solution (25) and Khan (2010) where 
(a) primary and (b) secondary velocities. 
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Fig. 3  Velocity profiles for different values of α with ω=1.0, t=1.0, Gr=5.0, 
Pr=0.71 where (a) primary and (b) secondary velocities. 

 

 

 
 

 
Fig. 4  Velocity profiles for different values of Gr with ω=1.0, t=1.0, α=0.2, 
Pr=0.71 where (a) primary and (b) secondary velocities. 

 

 
Fig. 5  Velocity profiles for different values of ω with Gr =5.0, t=1.0, α=0.2, 
Pr=0.71 where (a) primary and (b) secondary velocities. 
 
 

 
 

 
Fig. 6  Velocity profiles for different values of t with Gr =5.0, ω =1.0, 
α=0.2, Pr=0.71 where (a) primary and (b) secondary velocities. 
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Fig. 7  Temperature profiles for different values of Pr with t=1.0. 

 
 
CONCLUSION 

 

In this paper, an exact expression of the rotating and accelerated 

free convection flows in a second grade fluid was obtained. The 

dimensionless governing equations were solved by using the Laplace 

transform technique. Second grade fluid is a sub-class of viscoelastic 

fluid and it is reasonably hope to obtain exact solutions of the model 

but this not true for the orthers types of viscoelastic fluid. Thus the exact 

solutions determined in present study can be applied to verify the results 

of a more complex viscoelastic fluid model which approximated by 

using numerical method or pertubation theory. Moreover, the results 

obtained in this paper showed: 

1. Primary velocity increases and secondary velocity initially 

increases and then decreases decreases while increasing of 

second grade parameter, α. 

2. Primary velocity and secondary velocity are incresed by 

increasing the value of Grashof number, Gr. 

3. Primary velocity is enchanced when larger values of rotation 

parameter, ω is used. Contrary behaviour is observed for the 

secondary velocity. 
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