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Abstract 

This paper applied the multiscale boundary element method for the numerical solution of the Poisson 
equation. The multiscale technique coupling with boundary element method will be used to solve the 
problem of Poisson equation efficiently and faster. Numerical example is given to illustrate the 
efficiency of the propose method. The solution of proposed method will be compared with boundary 
element method and the former method show less iteration in computation. 
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INTRODUCTION 

In the past, solving problems numerically often meant a great deal 

of programming and numerical problems. The solution of Poisson 

equation is a well-known problem in many fields of science and 

engineering. Several types of numerical methods exist, each with their 

advantages and disadvantages. Poisson equation is a second order 

partial differential equation of elliptic type with broad utility in 

mechanical engineering and theoretical physics. It is a generalization 

of Poisson equation, which is also frequently seen in physics. The 

equation is named after the French mathematician, geometer, and 

physicist Siméon Denis Poisson. This is often written as: 

,0),(2  yxfu                                                            (1) 

2
 is called Laplace operator, and u and ),( yxf are real or 

complex-valued functions on a manifold. Usually, ),( yxf is given 

and u is sought. There are many methods in solving the numerical 

computation of the Poisson equation such as the Finite Element 

Method (FEM) and the Boundary Element Method (BEM). The FEM 

does have similarities to the BEM in that it does use elements and 

nodes, but on the boundaries only. The FEM is a method of dividing a 

physical system to be analyzed into smaller pieces while the BEM is 

derived through the discretization of an integral equation. In the BEM, 

the discretization is done only at the boundary, and this will result in 

more efficient computation and easier to be used compared with the 

FEM (Liu, 2009). 

This paper applied the multiscale boundary element method for 

the numerical solution of the Poisson equation. BEM has been widely 

used to solve the numerical problems, as it offers an excellent 

accuracy, efficient in modelling, an independent numerical method 

and easy mesh generation. This brings about the many advantages for 

the BEM. However, it suffers from well-known drawbacks with 

regard to the computational efficiency, since the conventional BEM 

leads to a linear system of equations with dense coefficient matrix 

(Liu, 2009). Moreover, it requires the knowledge of a suitable 

fundamental solution of differential equation. Problems with 

inhomogeneities or nonlinear differential equations are not accessible 

by pure BEM. To overcome this problem, we study on the application 

of multiscale boundary element method for the numerical solution of 

the Poisson equation with the help of Fortran. Solving the problem of 

Poisson equation using BEM is more slower since heavily use the 

numerical integration. Therefore we apply the Multiscale Boundary 

Element Method that will be able to solve the problems efficiently and 

fast. 

MULTISCALE BOUNDARY ELEMENT METHOD 

Multiscale technique  
Multiscale modeling or multiscale mathematics is the field of 

solving problems which have important features at multiple scales of 

time and/or space. The past studies have demonstrated that all scale-

born complexities can be effectively overcome, or drastically reduced 

by multiscale (multi-resolution, multilevel, multigrid, etc.) algorithms. 

Often, a combination of several multiscale approaches can benefit one 

particular problem in many different ways (Barth, 2001). An example 

of a combination of multiscale approachesis by Silvan-Cardenas and 

Wang, 2006 who has investigated using the multiscale Hermite 

transform as an approach to separate terrain elevations from feature 

heights.  

In this paper, we attempt to make use of the conjugate gradient 

and interpolation as a multiscale technique coupling with BEM. For 

positive defined quadratic function of the form : 

,
2

1
)( cxbQxxxf
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where x is the unknown vector, b is the known right-hand-side 

vectorand c is a real number. ,0,, 
Tn

QQbx the gradient 

vectors  kg   are mutually orthogonal. That is, 

  ,0iTk gg   for .ki              (3) 

Moreover, the search direction vectors are mutually Q-conjugate 

(Joshi and Moudgalya, 2004). In other words, 

  ,0i
Q

Tk dd   for .ki              (4) 

The basic conjugate gradient method which is designed using 

quadratic function is given as below, 

Algorithm 1 

Step 1: Set 0k select the initial point .
0x

Step 2: ).( 00 xfg  If ,
0 0g stop; go to step 9: else, set 

00 gd 

Step 3: .
kk

kk
k

dQd

gd
T

T



Step 4: .1 kkkk dxx 

Step 5: ).( 11   kk xfg If ,01 kg stop; go to step 9. 

Step 6: .
)1(

kk

kk
k

Qdd

Qdg
T

T



Step 7: .11 kkkk dgd  

Step 8: Set ;1 kk go to step 3. 

Step 9: End [7]. 

This method was first proposed for quadratic function and is 

developed into a method for the general functions (Chong and Zak, 

2001). In this paper, we use piecewise Newton interpolation. This 

interpolation is for getting values at positions in between the data 

points. The points are simply joined by straight line segments. Each 

segment that bounded by two data points can be interpolated 

independently. 

Boundary Element Method  
Boundary Element Method (BEM) has emerged as a powerful 

alternative to finite elements particularly in cases where better 

accuracy is required due to problems such as stress concentration or 

where the domain extends to infinity. In the BEM is an important 

numerical technique, a method of great efficiency. BEM is a general 

numerical method for solving boundary-value or initial-value 

problems formulated by using of the Boundary Integral Equation. The 

BEM mesh much easier to generate for three dimensional problems or 

infinite domain problems using the dimension reduction in Boundary 

Integral Equation formulations. 

Consider the following Poisson equation governing the potential 

field in domain V (either 2D or 3D, finite or infinite) and S is the 

boundary of the domain: 

,02  f   in V                               (5) 

where f is a known function in domain .V Firstly must form an 

integral equation from the Poisson equation by using a weighted 

integral equation: 

  .02

 

V

wf                              (6) 

The fundamental solution ),( yxG of a particular equation is the 

weighting function that is used in the boundary element formulation 

of that equation. The fundamental solution for potential problems 

satisfies: 

,0),(),(2  yxyxG  ,/, 32  yx (7) 

in which the derivatives are taken atpoint ,y and
2 and 

3 indicate 

the full 2D and 3D spaces, respectively. While the Dirac function

),( yx represents a unit source at the source point ,x and ),( yxG

represents the response at the field point y that is due to that source. 

The Dirac  function ),( yx in 2D and 3D has following sifting 

properties: 
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The fundamental solution ),( yxG is given by: 
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where r is the distance between the source point x and field point ,y

and its normal derivative is: 
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Then use the Green-Gauss theorem. The multi-dimensional 

equivalent of integration by parts is the Green-Gauss theorem: 
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for any two continuous functions u and ,v where n is the 

component of the outward normal. 

Let ),()( yyv  which satisfies Equation (5), and ),,()( yxGyu 

which satisfies Equation (7). From Equation (12), we have: 
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Applying Equations (5), (7) and (8), we obtain: 

  )( )(),()(),()( ydSyyxFyqyxGx

S

  

 

V

VxydVyfyxG ,  ),()(),(           (14) 

where .
n

q







Equation (14) is the representation integral of the solution 

inside the domain V for Equation (5). Once the boundary values of 

both  and q are unknown on ,S if needed, Equation (14) can be 

applied to calculate  everywhere in .V This is the boundary integral 

equation generally used as a starting point for boundary elements. 

NUMERICAL EXAMPLE 

Numerical example in 2D are presented in this section to 

demonstrate the efficiency and fast of the multiscale boundary 

element method for the numerical computation of the Poisson 

equation compared with boundary element method. All computations 

were done using Fortran compiler. 

Average error, E between mesh will be compared. The formula 

of average error: 





dx

Edx
E

1
          (15) 

Consider the following the following Poisson equation governing 

the potential field  in domain and S is the boundary of the domain:           

,02  f   in .V

The boundary conditions to be considered are: 

condition)boundary  (Dirichlet    on   ,  S

condition)boundary (Neumann     on   , qSq
n

q 







in which the over bar indicates the prescribed value for the function. 

SSS q  is the boundary of the domain and n is the outward 

normal of the boundary .S Figure 1 shows the boundary conditions 

and Figure 2 show the mesh of the graph that we will discretize the 

region in bigger mesh which produce small size by using multiscale 

technique. 

Fig. 1 Dirichlet and Neumann boundary conditions 

Fig. 2 Mesh of the problem. 

Example: 

,622 y    in .V

Figure 3 shows the boundary conditions 

Fig. 3 Boundary conditions. 

Results and discussion 

Table 1 and 2 shows the iterationsbetween 6464 ,3232  and 

128128 sizes based on two methods and Table 3 shows the average 

error between mesh. 

Table 1 Iteration count for Multiscale Boundary Element Method. 

n size No. of Iterations 

3232 115

6464 224

128128 414

Table 2 Iteration count for Boundary Element Method. 

n size No. of Iterations 

3232 139

6464 250

128128 424

Table 3 Average error between mesh. 

n size 
Average error, E

44 0.03570

3232 00370.0

6464 00190.0

128128 0.00097

element1
Multiscale the mesh
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The multiscale boundary element method for solving Poisson 

problem is presented in this paper. A multiscale technique approach, 

using a combination of the conjugate gradient and interpolation can 

significantly improve the conditioning of the boundary element 

method systems of equations and thus can facilitate faster 

convergence when the multiscale boundary element method is 

applied. 

Based on Table 1 and Table 2, the number of iteration was 

compared. To compute the result 3232 size by using the multiscale 

boundary element method, we need to compute 44 size first and 

then the result is used to compute the solution of 3232 size. 

Therefore, the total number of iterations to compute 3232 size 

solution is 115 iteration. However, the number of iteration needed to 

obtain the 3232 size by boundary element method is 139 iteration. 

Moreover, the number of iterations for 6464 and 128128 sizes 

by using the multiscale boundary element method is less than 

boundary element method. Clearly, the multiscale boundary element 

method compute the solution faster than boundary element method. 

Based on Table 3, the average error between mesh was compared. 

The average error state that the solution is close to the exact solution 

when the mesh larger. Then 128128 ,6464 ,3232  elements is 

more efficient than initial 4×4 element.The numerical example are 

presented that clearly demonstrate the effiency of the developed the 

multiscale boundary element method for solving the Poisson Problem. 

CONCLUSION 

Based on numerical results, we conclude that the multiscale 

boundary element method is faster compared with boundary element 

method. This paper is expected to establish a numerical library for the 

solution of the numerical computation of Poisson equation.the 

proposed method can be used as a reference for the future studies in 

many fields of science and engineering. On the other hand, the 

numerical results obtained will serve as reference and can be used for 

validation purposes against other (future) experimental and numerical 

results. More research need to be done to improve the boundary 

element method. Wide spread applications of the boundary element 

method for solving large-scale engineering problems may not be far 

away.  
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