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INTRODUCTION

Most of the biological and physical phenomena happened can be
modeled mathematically by using stochastic differential equations
(SDEs). Previously, ordinary differential equations (ODEs) often used
to described those systems. Due to the fact that most of the physical
phenomenon are influenced by the environmental noise and
disturbances, therefore SDES are used to represent the systems. SDES
were perturbed randomly by the unpredictable movement of white
noise, which then contribute to the difficulty in finding the analytical
solutions of SDEs. This leads to the development of numerical method
in order to approximate the solution for SDEs. Ito (1951) was the first
whom introduces SDES and became a catalyst for the development in
the SDEs field (Kloeden & Platen, 1992). Recently, numerical methods
for solving SDEs undergo an intensive research. There are many
researchers whom discussed the topic on the numerical computations
of SDEs such as Oksendal (1985), Kloeden & Platen (1992), Milstein
(1995), Burrage & Burrage (1999), Carletti (2006) and Norhayati
(2010).

The earliest numerical method for SDEs named as an Euler-
Maruyama method had been introduced by Maruyama in 1950 as stated
by Carletti (2006). This simplest stochastic numerical approximation
has a strong order of convergence 0.5 for multiplicative noise as well
as 1.0 for additive noise (Burrage, 1999). This low order of
convergence will result in inaccurate numerical computations.
Consequently, the more efficient numerical method needed and one of
the best approach is to use the truncation of stochastic Taylor series
expansion (Burrage, 1999). Next contribution was made by Milstein
(1974) when he proposed a so-called Milstein scheme from the
truncation of stochastic Taylor series. Milstein scheme is then proved
to have the strong order of convergence 1.0 (Milstein, 1995).

In this paper, we present a derivation of stochastic Taylor
expansion up to 2.0 order of convergence. The numerical example will
be carried out and the result will be discussed.

DERIVATION OF STOCHASTIC TAYLOR EXPANSIONS FOR
SDEs

In this section, we present a systematic derivation of stochastic
Taylor expansion for SDEs. The derivation of strong Taylor expansion
which approximates up to 2.0 order of convergence were set up.

Stochastic Taylor expansion for autonomous SDEs
Let consider SDES

dx(t) = f (x(®)dt +g(x(t))dW t) €y
where t €[t,,T]. Equation (1) can be expressed in the integral form

tn+1 tn+1
X(t.) = XE)+ [ FOx)dt+ [ gxDaw®) @
For simplicity the following notation is introduced

f=f(x(t,))
g =g(x(t,))

G
fr= x, (x(t,)

G
g'= o, (x(t,))
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The derivation of stochastic Taylor expansion for SDE is done by
replacing the integrals in (2) with their corresponding Taylor

expansions about X, where X, = X(t,) . The methods considered

here are based on Rao (1974). By applying Taylor expansion for drift
function f and diffusion function g we therefore obtain

f(x(t)) = f+(x(@)—x(t,))f+1/2(x(t)

2 n 3 (3)
=X(t,))" f "+ O; (| x(t) - x(t,) [')

g(x(1) = g+ (x(t) = x(t,)) g +1/ 2(x(t) - x(t,))* g "

4
+1/6(x(t) - x(t,))* g "+ O, (| x(t) = x(t,) [*) @

where O; (| x(t) = x(t,) [*) and O, (| x(t) = x(t,) [*) representing

higher order term for drift and diffusion functions respectively.
Substituting (3) and (4) into (2) hence

X(ty.) = X() + [ LF + (@O - x@) £
+1/ 2(x(t)n— x(t ) f"
+0, (|x(t) - x(t,)[" )3t
+ g+ (- x,)g’ ©
+1/2(x(t) - x(t,))*g"
+1/6(x(t) - x(t,))’g"
+O, (x(t) = x(t,)|" W (t)

Generally, equation (5) can be written as

() =)+ [ 2{%{&@) - x(tn))aﬂ x f(zo)}dt
=L ’ ®)

) _
+, Z[T“(t)—x(tn»’jdwa)

We then expand and rearrange (5) in order to get higher order numerical
schemes to the solution of SDEs. We then obtain

X(t,.) =x(t,)+ £ [ dt+g[ " dw ()
£ (x(t) - x(t, et
£ [ (X(O-x(t,)dW O
11/2f" I:M (X() - X(t)) ct
\ : )
129" [ (x(®) - x(t,)) AW (1)
+1/6g" j:"” (X() = X(t.)) AW ()
+f17 0, (x) -x(t,) )t

+L:M 0, (x(®) - x(t,)| )W (t)

From equation (7) we identify the multiple integrals together with
their elementary functions as follow

—t)="f-A

n+1

@ f j:"“ dt = f(t

®) g j: dW (t) = gW(t,,,) -W(t,)) = g-AW(t)

© £ (O -t

@ o'f" (O -x(t,))W )

@ 126" (O -x,) o

0 129" [" () - x(t,)) AW (D

© 169" (X(O-X(,) W)

To solve (c), x(t)—x(t,) is expanded in the form of Taylor series

which lead to the following representation

X(t) - X(t,) = f j: dt+g j: dW (t)
1 X,
+9' [ (x() - x(t,)aw (1)
+1/2f" I: (x(t) - x(t, ))2dt
+1/29" [ (X() = x(t,)*dW (1)

+1/6f" f (x(t) - x(t, ) dt

+higher order term

Then we have

£ (@ - x(t,)dt = 171 [ [ dscl

+fg I:M f: dW (s)dt

+ff j[‘”“ j: (x(s) - X(s, ))dsdt

+fg j[‘”“ j{‘ (x(s) - X(s,))dW (s)dt

+ higher order term

The term x(S) —X(S,) in (9) is written as a lower order Taylor

method as

X(s)~X(s,) = f (X(5,))(5~S,)
FG(X(S, )W (5) ~W(s,)
= f(s—s,)+g(s—s,)

Substituting (10) into (9), the following is obtained
£ (x@ - x(t,)dt

—f'f j:"“ L‘ dsdt
+0g[" [ dw (s)dt

1199 ] [ W () -W (s, )W (s)dt

+higher order term
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With the same technique as in (c), the term (d) can be expanded as

g'f" (- X)W

—g'f L‘ f dsdW (t)

+g'g[ " [ aw(s)aw

4 £ L (x(9) - x(s,)dsaw 12)
00" [ ] (K5) = X(,))W () awW 1)

+1/29'g" L f: (X(5) = X(5,))2dW (s) dW (t)

+higher order term

Substituting lower order form of Taylor series to replace X(S)—X(S,),
equation (12) then can be written as

g [} (x(© - x(t,) AW (1)

—g'f L‘ j{‘ dsdw (t)

+g'g[ [} aw (s)aw (1

+ 9] [ W () -W (s, )ds aw 1)

g T [ (s=s.)aW(s)aw ()

+0'0'[" [ W (S)-W (s, ))aW () aw (1)

+0'0'0gf " [ [ W () -, )dW ()dw () aw (1)

+1/29'g"gg [ || W($)-W(s,)) AW (s)awW (1)

(13)

In order to solve (e), we employed the same technique as previously
mention. We obtain

1/2f" f (x(t) - x(t. )2 dt

=1/2f "j:”"“(f (t—t,)+gW () -W (t,))? dt

=1/2f" ffj:“(t—tn) 2 (14)
+1/2f" fg f (t—t )W (t) - W (t,))dt

+1/2f "gg j: (W () -W (t,)) 2dt

By solving (f), we have

1/29° [ (x() - x(t,))” W (D)

~1/2g" f f j: (x(t) - x(t,)) dt dW (t)

+112"g[ [ (@ -x@ DWW 45)
+1/2g" " I: j: (x(t) - X(t, ))? dtdW (t)

+1/29"g' [ [ (x(© - x(t,))7 W @) dW (1)

By applying lower form of Taylor expansion, equation (15) can be

expanded as

1/2g" [ (x() - x(t,))* dW (1)
-1/2g"fg j:"“ L‘ (W (t) - W (t,)) dt dW (t)

+1/2g"of j: f (t—t ) dW (t) dW (t) )
+1/29"gg [ [ W()-W () dW () dW (1)

+1/29"¢'gg [ [ W -W ()’ W@ dw ()

By expanding the Taylor expansion to solve (g) and then substituting
the lower order form of stochastic taylor expansion, we then have

1/6g™ [ (x(t) = x(t,))" dW ()
— 7)
=1/69"ggg[ " W (1) -W(t,))° dW (1)

Adding together (a)-(g), the stochastic Taylor expansion for SDE is
X(t,,)=x(t,)+ f j dt+g L AW (t) +f ' f L jt dsdt
if'g f f dW (s)dt
+1ggf" [ W(s)-W(s,aw ()t
1g'f j: j{‘ dsdw (t)
+9'g[" [ dW ()W ()
#9119 [ W (S)-W(s,)dsaw (1)
+9'g T [ (s=s,)aW (5)aw 1)
+9'0'g[" [ W(9)-W(s,)awW (5)dw (1)
+9'9'0"0f" [| [ W (W) -W(u)aw W (s)aw 1)
+1/29'9"9g [ [ W(9)-W (s, ) W (s)aw (1)
11/2f "gg j: (W (1) - W (t,)) 2t
11/29" fg f Lt (W (1) -W (t ) dtdW (t)
+1/2g"gf j{‘ j{‘ (t—t )dW () dW (t)
#1/2g"gg[ " [L W@ -W() W O dw 0
+1/29°g' 09" [ WO -W () WO w0
+1/69"ggg [ W () -W (1))’ W (D)
+7 0, (x0) - x(t, ) et

£170,(x) -t )W ()
(18)
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Strong Taylor methods for SDEs

Stochastic Taylor expansions are the key to the development of
numerical methods for SDEs. Stochastic Taylor expansion can be
truncating up to certain order of convergence so that the numerical
schemes of SDEs can be developed. The numerical scheme of Euler-
Maruyama method with 0.5 order of convergence is obtained by
truncating the stochastic Taylor expansion (18) at third terms. Hence
we have

X(t +1) = x(t )+ f jt‘"“ dt+g jt‘““ dW (1) + R1 (19)
t t
where Lﬂ dt=A and L AW (D) =AW (D).
Then, Euler-Maruyama scheme is given as
X(t.,)=xt)+f -A+g9-(AW())+R1L (20)

where R1 is remainder term. Expanding the Taylor expansion and
truncating the equations (18) at fifth term, we then obtain a Milstein
scheme which can be presented as

X(t, +1) = x(t,)+ £ [ dt+ g [ AW (t)
’ ' (21)
+g'gf ™ [ dw (s)dw (t) + R2

In addition, the scheme of strong Taylor method with the order of
convergence 2.0 can as well be presented as

X(t,.,) = X(t, )+ f f dt+g f dW () +f ' f j: f dsdt
+f'g f f dW (s)dt
1190 [ W(s)-W (s, Daw (s)at
+g'f j{‘ j{‘ dsdw (t)
+g'gf [ oW aw
+g 11" [ W(s)-W(s,)dsaw (v
9" 1] (s-5,)aW(s)dw 1)
+9'90f" [} W ()W (5,)aW (s)aw (1)
+9'9'9'g[ [ W () -W (U, )aw @dw (s)aw )
+1129'9"gg " [ W(9)-W(s,)°dW (s) aw 1)
+1/2f"gg f (W (1) ~W (t,)) 2dt
+1/29" fg j{‘ j{‘ (W () -W (¢, )) dt dW (t)
+1/2g"of j: j: (t—t,)dW (t) dW (t)
+1/29" 9] [ WO -W (L) dW () aw (1)
+1/2g"9'gg " [L WO -W (L)) dW ©)dW ()

+1/69"ggg [ W () -W ()’ W 1)

+R3
(22)

where R3 is the remainder term. Numerical scheme above improved the
rate of convergence with order of convergence 2.0. The numerical
approximations to the multiple stratonovich integrals have been
introduced as in Table 1 below in a way to simplify the above schemes.

Table 1 Numerical approximations to the statonovich integrals.

] Numerical
Stratonovich Integrals o
Approximations

f dt A
j: dw(t) AW
Jo [ st A?Z
I ] awega AZ
I asaweo (AW)A-AZ
[ aweyaw) % Y
f I (W(s)-W(s,))dW(s)dw () % (AW

I, [} wie)-w(s,dsaw(y) SYCHEN

[ e-s)wE@awe  LaawpsLa
noo 6 12
[Pl wE-we wed 1wyt
noon 6 12
[T [ we-we) (awy’

AW (u)dW (s)dW (t)

where AW and AZ are random variables which are normally

distributed  with AW ~ N(0,A) AZ ~ N(O,%N) and

E(AWAZ) = %Az . Therefore, by applying the numerical
approximation to the stratonovich integrals, Milstein scheme in (21)
can be presented as

X(t,.) = x(t,)+ f-A+g- (AW ()

5 (23)
+1/2g9'g(AW (1))° +R2
Both Euler-Maruyama scheme and Milstein scheme have order of
convergence 1.0. Then we have strong Taylor method with order of
convergence 2.0 as follow:
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X(t,.,) =x(t,)+ f-A(t)
+g-(AW@) + f ' f-(A2/2)
+f'g-(AZ(1))
+f'9'g-((AM)(AW (1))° 1 6) + ((A(1)* /12))
+9" f - (AW ()A(t) —AZ(1))
+9'g- (AW ())* /2)
+9' 19 (AW (1)*A(t) - (A(t))*) / 6)
+9'g" f-((AM)(AW (1)* /6) + ((A(1)* /12))
+9'9'g- (AW (1))*/6)
+9'9'9'g- (AW (1))*/ 24)
+1/29'9"gg- (AW (t))* / 24)
+1/21"gg - ((A(t)(AW (1)) / 6) + ((A(t))? /12))
+1/29" g - (AW (1))* A(t) - (A(t))*) / 6)
+1/2g"of - ((A(t)(AW (t))* 1 6) + ((A(t))* /12))
+1/29"gg - (AW (1))* / 6)
+1/29"9'9g - ((AW (t))* / 24)

+1/69™"ggg - (AW (1))* / 24) + R3 (24)

RESULTS AND DISCUSSION

The following linear SDE taken from Kiichler(2000) is used to
compare the performance of 2.0 strong Taylor method, Euler-
Maruyama and Milstein schemes. Let us consider

dX (t) =aX (t)dt +bX (t)dW(t), te[0,T] (25)
The exact solution of (25) is
X (t) = (Dmo (Xo) (26)

where @, =exp((a—b/2)(t-t,) +bW () -W(t,)))

In this numerical example, we have set the coefficient as

a=-20, b=05 T=20, X(0)=10 and A=0.01

We simulate 200 sample paths of strong solution SDE via Euler-
Maruyama, Milstein and stochastic Taylor method with order 2.0. The
mean-square error between numerical solution and exact solution has
been calculated. The perfomance of Euler-Maruyama, Milstein and
Taylor method with order 2.0 are presented in Figure 1, Figure 2 and
Figure 3 respectively.

1.5

Euler-Maruyama
Actual Solution

0.5

05

0.8 1 1.2 1.4 1.6 1.8 2
Time

Figure 1 Strong approximations of SDEs via Euler-Maruyama.

Milstein Schemes
Actual Solution

X(t)

. , . . . . \ . )
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Figure 2 Strong approximation of SDEs via Milstein scheme.

T T
Taylor 2.0
Actual Solution |

L L . L L . L L .
0 02 04 06 08 1 12 14 16 1.8 2
Time

Figure 3 Strong approximation of SDEs via Taylor method order 2.0.

Based on Figure 1, Figure 2 and Figure 3, it shows that Figure 3 gives
a better performance than the result presented in Figure 1 and Figure 2.
Table 2 shows mean-square error between numerical solution and the
exact solution for SDE. Stochastic Taylor method with order of
convergence 2.0 gives a better solution compare to Euler-Maruyama
and Milstein methods.

Table 2 Mean-Square Error of Numerical and Exact Solution.

Numerical Euler- 2.0 Stochastic

Scheme Maruyama Milstein Taylor Method
MSE 0.247702 0.084398 0.024104
CONCLUSION

In this paper, the derivation of higher order numerical schemes to the
solution of SDEs truncated from the stochastic Taylor expansions have
been presented. It shows that the lower order numerical schemes show
low accuracy to solve the system of SDEs.
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