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Graphical abstract 

Abstract 

Designing and implementing a procedure for computing the polynomial resultant provides an 
avenue for analyzing both the computational complexity and performance of such construction. 
In this paper a new Maple procedure called Sturmfelmethod for computing the Sturmfel-Salmon 
resultant method is proposed based on existing methods and assumptions. Examples are 
provided to demonstrate the mechanization of the resulting new algorithm and its computing time. 
The new procedure can be used to determine whether three polynomials intersect or not and to 
solve a given system of polynomial equations. 
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INTRODUCTION 

Solving system of polynomial equation is one of the fundamental 

problem of algebra and algebraic geometry, which comprises both 

analytical and numerical approaches. One of the important technique is 

the elimination theory which provide a systematic ways  of solving 

systems of polynomial equations in addition to provide a condition 

whether the systems have common solution or not. The techniques are 

Groebner basis, matrix method, characteristics set and homotopy 

pertubation method. Large storage requirement coupled with high 

computational complexity of the Groebner basis and set characteristics 

approaches makes the matrix method of computing resultant more 

popular and powerful way of solving a system of polynomials. 

Several algorithms for computing resultant via the matrix method 

are presented in (Canny and Emiris, 1993; Canny and Pedersen, 1993; 

Sulaiman and Aris, 2016; Li et al., 2015). If the matrix  uses coefficients 

of the polynomials it is called Sylvester method (Sylvester, 1853; 

Sturmfels, 2002)  while Bezout method has a complicated entries, that 

is in form of polynomial in terms of the coefficient also (Wang and 

Lian, 2005, Sulaiman et al., 2017) 

Availability of the computer algebra system (CAS) such as Maple, 

Cocoa, Mathematica and Macaulay2 make  many problems that are 

beyond the reach of human being solvable. For example computing the 

resultant of the system (1)generates a homogenous polynomial of 

degree 12 in terms of the coefficients of the system with 21,894  

different terms (Wang and Lian, 2005).  While with the use of CAS, the 

system can be generated within a few seconds which makes it very 

important in areas of application such as computer aided design, 

robotics, geometric modelling and geodesy  (Cox et al., 2006).  

2 2 2

1 1 2 4 3 5 6
2 2 2

2 1 2 4 3 5 6
2 2 2

3 1 2 4 3 5 6

3 2 2
2 3 2

2 2 3

f a x a xy a xz a y a yz a z
f b x b xy b xz b y b yz b z
f c x c xy c xz c y c yz c z

F
     
     
     




 


                      (1) 

This paper proposes a new MAPLE procedure called Sturmfels 

Method that can compute the Sturmfel-Salmon resultant and display the 

resulting polynomial. Naturally, the Sturmfels-Salmon method is like 

the classical Macaulay method, considering n systemsof homogeneous 

polynomials with exactly n variables. 

The method was proposed by Salmon (1885)  for certain class of 

polynomials in which he had projected that the approach  can be 

extended to higher degree polynomials stating the challenges behind 

the generalization of the method which until today remain a unsolved. 

Sturmfel observed that, the method need some modification and 

proposed a division with a certain constant to reduced the redundancy 

(Sturmfels, 2002). 

The approach was named Sturmfels method in (Paláncz et al., 

2008) to acknowledge the contribution of the Bernd Sturmfels, 

although the real  idea was from (Salmon, 1885). The combination 

Sturmfels-Salmon is due to their vital contributions towards producing 

that formulation. The choice of the Sturmfels-Salmon resultant method 

is due to the conciseness of its resultant matrix, which produces only a 

6×6 matrix for a three homogenous system of degree two compared to 

the classical method of Macaulay, which gives up to 15×15 resultant 

matrix.  Therefore, the mechanization of this method for computing the 

resultant of such homogeneous systems, using a computer algebra 

system is expected to be effective and efficient. 
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PRELIMINARIES 

Basic notion 
Theorem 1 (Sturmfels, 2002) For 𝑛 system of homogenous polynomial  

equations in 𝑛 variables  

     1 1 2 1 1
  , , , , , , 0

n n n n
f x x f x x f x x      (2) 

then any non-trivial common solution is also a solution of the Jacobian 

polynomial given in (3) 

 

1

1

1

1

1

, , det

n

n

n

n

n

f f

x x
J x x

f f

x x

  
  
 

   
  
   

                  (3) 

Moreover, if all 𝑓𝑖 have the same degree, then any non-trivial 

common solution to the system (2) is also a solution of all 

polynomials(Sturmfels, 1998; Stiller, 1996) 

 1
, , ,  1,2, ,

n

i

J
x x i n

x


   


  (4) 

Based on Theorem , the Sturmfel-Salmon resultant can be formulated 

in a series of steps. 

Consider the system of 𝑛 polynomials in 𝑛 variables given in 

Eq.(2). From the popular Bezout’s Theorem, we shall expect
1 2

...
n

d d d

solutions where 
i

d is a respective degrees of
i

f . Although, there may 

be infinite solutions in a degenerated situation. For the  following  

system of  homogeneous equations of degree two 

2 2 2 0  1,2,3
i i i i i i i

f a x b y c xy d xz e yz hz i           (5) 

The determinant of the Jocobian  matrix given in Eq. (6) is 

computed, which is another homogeneous polynomial of degree three 

in 3 variables. 

1 1

2 2 2

3

1

3 3

det

f f f

x y z
f f f

J
x y z
f f f

x y z

   
 
   
   
   
   
 
    

                  (6) 

The partial derivatives of Eq (6) with repect to ,x y and z is 

another set of  homogeneous are generated such that  

2 2 2

1 1 1 1 1 1:=             0,
J

A x B y C z D xy E xz H yz
x


     



2 2 2

2 2 2 2 2 2:              0,
J

A x B y C z D xy E xz H yz
y


      



2 2 2

3 3 3 3 3 3:              0,
J

A x B y C z D xy E xz H yz
z


      



The three partial derivatives above are derived by differentiating 

Eq. (6) with respect to ,x y and z .Considering z as a constant and 

introduce another variable say w , the following six independent 

monomials are  recorded
2 2 2, , , , ,x y xy xw yw w . The Sturmfel-Salmon 

resultant matrix for the system of the homogenous polynomials in Eq. 

(5),together with the matrix of the monomials are generated from the  

coefficients of the three homogeneous and that of the coefficients of the 

pertial derivatives of the determinant of  the Jacobian.   

2 2

11 1 1 1 1
2 2

2 2 2 2 2 2
2

3 3 3 3 3 3

1 1 1 1 1 1

2 2 2 2 2 2
2

3 3 3 3 3 3

0

z ha b c zd ze x
a b c zd ze z h y
a b c zd ze xyz h
A B C D E xwH
A B C D E ywH
A B C D E wH

   
   
   

   
   
   

  

with  𝐴𝑖, 𝐵𝑖, … , 𝐻𝑖 as the coefficients of the Jacobian polynomial and 

the resultant  is the determinant of the on the left matrix. 

Theorem 2 (Sturmfels, 2002) : For a system  of polynomials 1,..., nf f

with respective degrees, 1,..., nd d there is a unique polynomial 

1 2 ,Res( , ,..., ) [ ]n ix x x c  which satisfy the following:- 

(a) If 
1 1 2
,..., [ , ,..., ]

n n
f f x x x are homogenous of degrees

1,..., nd d respectively, then Eq(2)has a nontrival solution over 

ℂ if and only if 1 2Res( , ,..., ) 0.nx x x 

(b) 1

1Res( ,..., ) 1ndd

nx x  . 

(c) 1 2Res( , ,..., )nx x x is irreducible over  ℂ. 

Sturmfel-Salmon Algorithm for computing resultant 

Input: 
1
( , , )f x y z ,

2
( , , )f x y z and 

3
( , , )f x y z   with 

1 2 3
, ,f f f 

[ , , ]K x y z where K is a field of complex numbers. 

Output: C , the determinant of the Sturmfel-Salmon resultant 

(1) Convert the system 
1 2 3
, ,f f f to homogeneous polynomials 

(2) Find the Jacobian matrix of
1 2 3
, ,f f f and compute its  

determinant A . 

(3) Differentiate A with respect to Var1, Var2 and Var3 where 

Var1, Var2 and Var3 represent the variables of Eq(1) after 

homogenization. 

(4) Generate the Sturmfel-Salmon resultant matrix B

(5) Compute C the determinant of matrix B

MAPLE procedure for the Sturmfel-Salmon Algorithm:  

with(linalg): 

Sturmfelmethod:=proc(exp1,exp2,exp3,var1,var2,var3) 

local R,F,G,H,S,T,Q, Dlim,Dlim1, dlim1, dlim2, dlim3, Elim, Elim1, 

elim1, elim2, elim3, Flim, Flim1, flim1, flim2, 

flim3,F1,F2,F3,D1,D2,D3,E1,E2,E3,A1,A2,A3,A4,A5,A6,B1,B2,B3,B4

,B5,B6,C1,C2,C3,C4,C5,C6; 

R:=matrix(3,3,[[diff(exp1,var1), diff(exp1,var2), 

diff(exp1,var3)],[diff(exp2,var1),diff(exp2,var2),diff(exp2,var3)],[diff(

exp3,var1,),diff(exp3,var2),diff(exp3,var3)]]); 

Q:=normal(det(R)); if  Q ≠ 0 then 

F:=diff(Q,var1); G:=diff(Q,var2);H:=diff(Q,var3); 

Dlim:=coeff(F,var1); 

Dlim1:=coeff(F,var2);dlim1:=coeff(Dlim,var2); 

dlim2:=coeff(Dlim,var3);dlim3:=coeff(Dlim1,var3); 

Elim:=coeff(G,var1); Elim1:= coeff(G,var2); 

elim1:=coeff(Elim,var2); elim2:=coeff(Elim,var3); 

elim3:=coeff(Elim1,var3); 

Flim:=coeff(H,var1); Flim1:= coeff(H,var2); 

flim1:=coeff(Flim,var2); flim2:=coeff(Flim,var3); 

flim3:=coeff(Flim1,var3); 

F1:=coeff(F,var1^2); F2:=coeff(F,var2^2); F3:=coeff(F,var3^2); 

D1:=coeff(G,var1^2); D2:=coeff(G,var2^2); D3:=coeff(G,var3^2); 

E1:=coeff(H,var1^2); E2:=coeff(H,var2^2); E3:=coeff(H,var3^2); 

A1:=coeff(coeff(exp1,var1,2),var2,0);  

A2:=coeff(coeff(exp1,var2,2),var1,0); 

A3:=coeff(coeff(exp1,var1,1),var2,1); 

A4:=coeff(coeff(exp1,var1,1),var3,1); 

A5:=coeff(coeff(exp1,var2,1),var3,1); 

A6:=coeff(coeff(exp1,var3,2),var2,0); 
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B1:=coeff(coeff(exp2,var1,2),var2,0);  

B2:=coeff(coeff(exp2,var2,2),var1,0); 

B3:=coeff(coeff(exp2,var1,1),var2,1); 

B4:=coeff(coeff(exp2,var1,1),var3,1); 

B5:=coeff(coeff(exp2,var2,1),var3,1); 

B6:=coeff(coeff(exp2,var3,2),var2,0); 

C1:=coeff(coeff(exp3,var1,2),var2,0);  

C2:=coeff(coeff(exp3,var2,2),var1,0); 

C3:=coeff(coeff(exp3,var1,1),var2,1); 

C4:=coeff(coeff(exp3,var1,1),var3,1); 

C5:=coeff(coeff(exp3,var2,1),var3,1); 

C6:=coeff(coeff(exp3,var3,2),var2,0); 

S:=matrix(6,6,[[A1,A2,A3,A4,A5,A6],[B1,B2,B3,B4,B5,B6],[C1,C2,C

3,C4,C5,C6],[F1,F2,dlim1,dlim2,dlim3,F3],[D1,D2,elim1,elim2,elim

3,D3],[E1,E2,flim1,flim2,flim3,E3]]); 

lprint(‘’The following is a Sturmfel-Salmon  resultant matrix’’); 

 print(S); 

lprint(‘’The determinant of the above matrix is given below’’); 

 T:=normal(det(S)); 

end if; 

 end proc: 

 

 

RESULTS AND DISCUSSION 
 
Mechanization of theSturmfelmethod  

The MAPLE procedure Sturmfelmethod presented in the previous 

section will be applied to certain systems of multivariate polynomials 

in two and three variables.The polynomials are homogenized to be of 

degree 2. The resultant of these polynomials are compared with the 

results of other resultant matrix method such as the classical Macaulay 

method. The computing time is observed to indicate the efficiency of 

the method when applied in an exact computation computer 

environment such as MAPLE. 

 

Example 1: Consider the following polynomial (Wang and Lian, 2005) 

 
2 2

1 1 2

2 2

2 1 2 3

3

f a x a y

f b x b y b xz

f y x z

 

  

  

                            (7) 

 

The system of Eq.  (7)  is  first homogenized and presented in the Maple 

command given below: 

 

f[1]:=a[1]*x^2-a[2]*y^2 

f[2]:=b[1]*x^2-b[2]y^2+ z*b[3]x*p 

f[3]:=y*p-x*p+z*p^2 

Sturmfelmethod(f[1], f[2],f[3],x,y,p) 

 

Assuming z is constant with pas a homogenizing variable, the 

procedure Sturmfelmethod of the previous section will (i) compute the 

Jacobian matrix of the system of Example 1,  (ii) find the determinant 

of the Jacobian matrix followed by (iii) finding the partial derivatives 

of the determinant with repect to varibles x,y and pextract the 

coefficients of the derivatives and the initial system of Example 1, and 

form the Sturmfel-Salmon resultant matrix and finally (v)compute the 

determinant of the resultant matrix which is the projection operator. The 

following output is displayed: 

 

The Sturmfel-Salmon resultant matrix is: 

 

1 2

31 2

1 2 2 11 2 2 1 1 31 2 2 1
2

2 31 2 21 2 2 1 1 2 2 1 2 3
2

1 2 2 11 3 2 3 2 3

0 000
0 00
10 10 0

8 8 08 8 40 4 4
48 84 4 0 8 8 4

8 82 2 0 8 0

a a
zbb b

z
za b za ba b a b za ba b a b

za ba b a ba b a b za b za b z a b
za b za bza b za b z a b

 
 
 
    
    
   

 

 
The determintant of the above resultant matrix is: 

4 4 3 3 3 3 3 2 2 2 2 2 2

1 2 1 2 1 2 1 2 2 3 1 2 2 3 1 2 1 2

2 2 2 2 2 2 2 2 2 2 3 3 3 2

1 2 1 2 3 1 2 1 2 3 1 2 2 3 1 2 1 2 1 2 1 2 3

3 2 2 3 2 4 4 4 3 4 2 2 3

1 2 1 3 1 2 1 2 3 2 1 2 1 3 2 1 3 2 1

4 4 2 6

6 2 4 6

2

5 (

2

12 a b a a b b a a b b a a b b a a b b

a a b b b a a b b b a a b b a a

z

b b a a b b b

a a b b a a b b b a b a b b a b b a b b

    

    

     



2

2 3 ).b

 

 

Further simplification reveals that the determinant can be given as  

 
4 2 2 2 2 2 2

1 2 2 1 1 2 1 2 1 2 1 2 2 3 1 2 3 2 1

2 2 2

2 1 3 2 3

512 ( ) ( 2 2

2 ).

z a b a b a b a a b b a a b b a a b a b

a b b a b

    

 
 

 

which coincide with the result obtained using the Macaulay resultant 

method before the division with the minor matrix which is a systematic 

approach of  reducing the redundant factors. This example shows that, 

the Sturmfel-Salmon resultant produces an unwanted factor in the 

projection operator. 

 

Example 2 Consider the following  polynomial (Stiller, 1996) 

 
2 2

1

2 2 2

2

2 2

3

2

3

f x y

f x y z

f x y

  

   

 

                      (8) 

 

The system (6) is  first homogenized and presented in the Maple 

command given below: 

 

f[1]:=x^2+y^2-2w^2 

f[2]:=x^2+y^2+( z^2-3)*w^2 

f[3]:=x^2-y^2 

Sturmfelmethod(f[1], f[2], f[3],x,y,w) 

 

Assuming z is constant with w as a homogenizing variable, and 

implementing the steps as of Example 1, the following output will be 

displayed. 

 

The Sturmfel-Salmon resultant matrix is: 

 

2

2

2

2

0 0 0 21 1
0 0 01 1 3
0 0 01 1 0
0 00 0 16 16 0
00 0 16 16 0 0

0 0 16 16 0 0 0

z

z
z

z

 
 
 
 
 
  

 

 

The determinant of the above resultant matrix is : 

 
8 6 4 28192 32768 49152 32768 8192z z z z     

 

Setting the above expression equal to zere nd further simplification 

gives the following 

Solving the equation gives 1z   , four times. By a little back 

substitution, the solution of the system in this example is

( 1, 1, 1)x y z      . 

The result is in agreement with the one obtain in (Stiller, 1996),  

The size of the resultant matrix is only 6 × 6 compared to the classical 

method of Macaulay which gives 15 × 15  resultant matrix.  

 

Example 3 (Intersection of curve and surface)  Consider the following  

polynomial 

 
2 2

1

2 2

2

4

2 3 9

f x y

f x y

  

  
                                  (9) 

 

The system after homogenization will have n equation in n +1 
variables which lead to another notion of u-resultant. The computation 

of u-resultant is use when finding allcommon  isolated roots of 

underdetermine  system of polynomials (Emiris and Mourrain, 1999). 



Sulaiman et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 3 (2017) 165-169 

 

168 

The system of Eq.  (9) is  first homogenized and presented in the 

Maple command given below using the method of  u-resultant: 
 

f[1]:=x^2+y^2-4w^2 

f[2]:=2*x^2+3*y^2+9*w^2 

f[3]:=u[1]*x*w+u[2]*y*w+u[3]*w^2 

Sturmfelmethod(f[1], f[2],f[3],x,y,w) 

 

Assuming w as a homogenizing variable, and executing the 

procedure Sturmfelmethod, the following results are obtained and 

displayed: 

 

The Sturmfel-Salmon resultant matrix is: 

 

1 2 3

1 32 2

2 31 1

3 2 1

0 0 0 41 1
0 0 0 92 3
00 0

8 0 80 4 4
8 84 0 0 12
80 0 8 24 0

u u u
u uu u
u uu u
u u u

 
 

 
 
 
 
 

 

 

The determintant of the above matrix is: 

 
4 2 2 2 2 4 2 2 4

1 1 2 1 3 2 2 3 34608 3072 3072 512 1024 512 .u u u u u u u u u      
 

Further simplification reveals that the determinant can be given as  

 

2 3 1 2 3 1 2 3 1

512
( 3 3 3 )( 3 3 3 )( 3 3 3 )

9
u u u u u u u u u       

2 3 1
( 3 3 3 )u u u   

 
A little work gives the intersection as 

 

( 3,1),( 3, 1),( 3,1) and ( 3, 1)      . 

 

Example 4: Consider the following  polynomial 

 
2 2

1 3 4 5 6

2 2

2 1 2 5 6

3 1 2 3

f a xz a y a yz a y

f b x b xy b yz b y

f c x c y c z

   

   

  

   (10) 

 
The system  of Eq (10)  will now be homogenized and presented in 

the Maple command  

 

f[1]:=a[3]*x*z*w+a[4]*y^2+a[5]*y*w*z+a[6]*z^2*w^2 

f[2]:=b[1]*x^2+b[2]*x*y+b[5]*y*w*z+b[6]*z^2*w^2 

f[3]:=c[1]*x*w+c[2]*y*w+c[3]*z*w^2 

Sturmfelmethod(f[1], f[2],f[3],x,y,w) 

 

Assuming w as a homogenizing variable, and executing the procedure 

Sturmfelmethod. 

 

For this example, the resultant matrix is of size 6 by 6 but the 

equations in the matrix is lengthy and shall not be displayed here. The 

system generate 10 by 10 resultant matrix using classical Macaulay 

formulation. 

 

The determinant of the resultant matrix is : 

 

2 4 2 2 3 2 2 4 3

4 1 3 5 2 5 1 2 3 3 4 1 2 2 3 4 1 3 4 5 1 2 1 3

2 2 2 2 2 2 2 4

5 1 6 1 2 4 5 1 5 1 3 4 6 1 6 1 2 4 5 5 6 1 4 3 3

2 2 2 2 3 2 3 2 3 2

4 6 2 1 3 3 1 5 2 3 3 4 2 1 3 5 6 1 2 3 6 1 2 1

512

2

(

2 2

a z b a a b b c c c a a b b c c a b c a a b b c c

a b b c c a a b b c c a a b b c c a a b b c a a bcc

a a b c c a b b c c a a b c c a a b c c a b b c c

   

    

    



3

2

2 3 2 2 2 2 4 2 2 2 2 2 4

4 5 1 2 3 4 6 1 2 3 4 6 5 1 6 2 1 2 1 3 6 2

2 2 3 2 2 2 2 2 2 2 2 2

3 5 1 2 2 3 3 6 1 2 2 3 4 1 6 1 3 5 1 2 3 5 1 2 1 2 3

2 3 2 3 2

3 2 6 1 2 5 2 6 1 2 4 3 1 5 1 2 3

2 2

2

3 4

a a b c c a a b c c a a b c a b c c b a b c
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Limitation and Further Work 

The Sturmfel-Salmon resultant method, like other formulations, 

produces and unwanted factor which is contained in the projection 

operator.  According to Theorem 2(b) the resultant of the leading 

monomial  1

1Res( ,..., ) 1ndd

nx x  , but Sturmfel-Salmon resultant method 

produces a multiple of 512 attached with the resultant.   

The input polynomials for the Sturmfelmethod procedure must first be 

homogenized. An algorithm for homogenizing the polynomials need to 

be constructed. The algorithm can be applicable to other resultant 

formulation since homogenizing polynomial equations is required 

whereby the solutions of the homogenizing variable gives an insight to 

finding the solutions of  multivariate polynomials in the underlying 

projective space. 

 
CONCLUSION 
 
In this paper the MAPLE procedure of computing the Sturmfel-Salmon 

resultant is constructed and implemented on some examples. The 

results show that the Sturmfel-Salmon matrix method can produces 6 ×
6 resultant matrix compared to classical methods such  Macaulay which 

produce up to 15 × 15  resultant for three homogeneous system of 

degree two.  Even though the presence of  extraneous factors cannot be 

eliminated, the implementation of the method on these examples does 

not take up to a seconds, indicating its efficiency, when appropriate 

method of computing determinants built in the MAPLE software is 

applied. 
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