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Abstract 
 
The present paper focuses on the influence of radiation and viscous dissipation on 
magnetohydrodynamic (MHD) flow and heat transfer of a Jeffrey fluid over a stretching sheet with 
convective boundary conditions (CBC). The governing equations are reduced to non-linear ordinary 
differential equations by using similarity transformation variables and then solved by using Runge-
Kutta-Fehlberg method. The results generated from the numerical computations are presented in the 
form of tables and graphs for some values of Deborah number, ratio of relaxation to retardation times, 
Eckert number, radiation parameter and magnetic parameter. It is found that the distribution of fluid 
velocity is noticeably increased with an increment in Deborah number while the distribution of 
temperature shows the opposite trend. 
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INTRODUCTION 
 

The convection boundary layer flow problem passing over a 

stretching sheet is crucial in many practical applications, to be exact 

when dealing with thermal effects where it happened in numerous 

industrial outputs processes such as plastic sheet, hot rolling, glass fibre 

production, paper production and wire drawing. These industrial 

outputs will undergo the heating and cooling process to produce 

desirable output. Thus, the understanding of the surface geometry and 

heat transfer with the purpose of upgrading the quality of final products 

are very important (Magyari and Keller, 1999).  

In the past work, most of the modeling of convection boundary 

layer flow problem has been discovered by concentrating on the 

Newtonian fluid. However, such fluids are unable to analyse by a single 

constitutive relationship between shear stress and strain rate. Hence, by 

reason of increasing importance in the processing industries including 

metal and polymer sheet, the non-Newtonian fluid has started to capture 

the attention of the researchers. On top of that, the non-Newtonian fluid 

is chosen as it can represent the complex nature fluid existed in this 

world. There are many non-Newtonian fluid established, however, the 

non-Newtonian Jeffrey fluid is of interests due to its special 

characteristics of displaying the features of relaxation to retardation 

times, where plentiful applications appear in polymer industries (Dalir, 

2014; Das et al., 2015; Qasim, 2013). Dilute polymer solution is an 

example of Jeffrey fluid. It is interesting to mention that the existence 

of Jeffrey fluid model is basically to overcome the weaknesses arises in 

Maxwell fluid. In comparison to Jeffrey fluid, Maxwell fluid model can 

only describe the behavior of relaxation, but not retardation (Farooq et 

al., 2015).  

The primary study on the concept of boundary layer behaviour over 

solid surface has been documented by Sakiadis (1961). By focusing the 

similar area of study, Erickson et al. (1966) extended the study with the 

effect of suction or injection. The flow past a stretching sheet was then 

performed by Crane (1970) while Gupta and Gupta (1977) considered 

the same surface geometry with the effect of suction or blowing. Salleh 

et al. (2010) studied the boundary layer flow and heat transfer over a 

stretching sheet with Newtonian heating. Next, Hayat et al. (2014) 

focused on the unsteady flow of Jeffrey fluid past a stretching sheet. 

Since then, the study of boundary layer flow over a stretching sheet 

with several effects started to continuously grow. For instance, Hayat 

et al. (2015) and Babu and Narayana (2016) considered the 

magnetohydrodynamic (MHD) Jeffrey fluid while thermal radiation 

effect over stretching sheet has been tackled by Narayana and Babu 

(2016) and Das et al. (2015). The study of MHD flow is important as it 

has many applications in industry, engineering and metallurgical 

processes. The use of electrically conductive polymeric liquid in the 

process of metallurgy and polymer technology may improve the quality 

of final product. This is because, cooling rate can be controlled by the 

proper application of applied magnetic field. Furthermore, the thermal 

radiation effect has significant role in controlling the heat transfer 

process specifically at high operating temperature such as gas turbines, 

nuclear power plant and thermal energy store. On the other hand, the 

viscous dissipation effect which is generated by the frictional force and 

is considered as a source of heat has been explored comprehensively by 

Mohamed et al. (2016); Mustafa et al. (2012) and Zokri et al. (2016).  

Motivated to the above investigations, the present study aims to 

explore the influence of convective boundary conditions on the effect 

of radiation and viscous dissipation in MHD Jeffrey fluid over a 
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stretching sheet. The convective boundary condition is known as the 

supply of heat through a bounding surface of finite thickness and finite 

capacity. Moreover, the interface temperature is not known a priori but 

depends on the intrinsic properties of the system (Merkin, 1994). 

Recent study on the convectively heated stretching sheet has been done 

by Mohamed et al. (2015) and Al-Sharif et al. (2016).  

MATHEMATICAL FORMULATION 

The steady two-dimensional flow over a stretching sheet immersed 

in an incompressible and electrically conducting Jeffrey fluid of 

ambient temperature T
is considered. The rectangular Cartesian 

coordinates ( , )x y are used in which x  and y  axes are measured 

parallel to the plate and normal to it, respectively and the fluid occupies 

the region 0y  . A uniform magnetic field of strength 0B is applied 

normal to the stretching sheet and oriented to the positive y direction. 

The magnetic Reynolds number is assumed to be small, accordingly the 

induced magnetic field is negligible. The physical model and 

coordinate system of this problem is shown in Figure 1. The partial 

differential equations describing the flow can be written as 
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Fig. 1 Physical model of the coordinate system. 

where ( )wu x is the stretching velocity with a being the positive 

constant, while u and v are the velocity components along the x 

and y  directions, respectively. Additionally,  is the dynamic 

viscosity, v is the kinematic viscosity,  is the ratio of relaxation and 

retardation times, 
1 is the relaxation time, g is the gravity 

acceleration,  is the thermal diffusivity,  is the thermal expansion, 

T is the local temperature,  is the fluid density,  is the electric 

conductivity, 
rq is the radiative heat flux, 

pC is the specific heat 

capacity at a constant pressure, k is the thermal conductivity, 
fh is the 

heat transfer coefficient and 2

fT T bx  is the hot fluid temperature 

where b corresponds to dimensionless constant (Afridi et al., 2016).  

Imposing the Rosseland approximation for radiation (Bataller, 

2008), the radiative heat flux gives 
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where   and k  are the Stefan-Boltzmann constant and the mean 

absorption coefficient, respectively. The temperature difference is 

assumed such that the linear function of temperature is expressed as 
4 .T By using Taylor series, the term 4T is expanding about T

and 

higher-order terms is neglected. This yields   
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Using Eqs. (5) and (6), Eq. (3) reduces to 
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The influence of radiation in Eq. (7) is expected to enhance the thermal 

diffusivity. Thus, by expressing the radiation parameter as 
34
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Introducing the similarity transformation variables: 
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The Eq. (1) is automatically satisfied if stream function  is chosen 

such that u
y





and v
x
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 


. Then, we have  
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where prime denotes differentiation with respect to  . By substituting 

Eqs. (9) and (10) into (2) and (3), we obtain the following nonlinear 

ordinary differential equations: 
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The boundary conditions Eq. (4) become 
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(0) 0, (0) 1,  (0) (1 (0))     at     0
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is magnetic parameter. It is worth mentioning that when 0Bi  and 

Bi  , the insulated wall and constant wall temperature is presented, 

respectively. By letting 0,M  the exact analytical solution of Eq. (11) 

as given by Hayat et al. (2014) is obtained as follows 
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. Noted that the second derivative of the exact 

solution for Eq. (14) is ( ) mf me     , therefore, the dimensionless 

velocity gradient at the sheet surface is  

(0)f m             (15) 

In practical applications, the physical quantities of interest are the local 

skin friction coefficient 
fC and the Nusselt number 

xNu (Molla et al., 

2006): 
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The surface shear stress 
w and the surface heat flux 

wq are given by 

(Das et al., 2015) 
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where v  and k being the dynamic viscosity and the thermal 

conductivity, respectively. Using Eqs. (16) and (17), the reduced skin 

friction coefficient 
1/2Ref xC and reduced Nusselt number 1/2RexNu 

are: 
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where Re wu x

v
 is the local Reynolds number. 

RESULTS AND DISCUSSION 

Eqs. (11) and (12) subject to the boundary conditions (13) were 

solved numerically by using Runge-Kutta-Fehlberg Method, which is 

programmed in MAPLE software. The boundary layer thickness in the 

range of 5 to 30 are used in this study to achieve the far field boundary 

conditions asymptotically. The fixed parameters used in the simulations 

are Pr 0.71 (air),
2 0.1,  0.2REc N     and 1.0,Bi M 

except otherwise stated. Table 1 shows the comparison of the present 

study with the exact solution of skin friction coefficient (0)f  from 

Eq. (15) and the existing publication documented by Dalir (2014). From 

this table, it is shown that the results are in great consistency, thus this 

gives assurance to the authors to proceed with the present codes. 

Table 1 Comparison between the present solution and previous 

published results for various values of (0)f  when 0.2,  0M 

and .Bi 

2 Exact solution Eq. (15) Dalir (2014) Present 

0.0 -1.09544512 -1.09641580 -1.09544512 

0.2 -1.00000000 -1.00124052 -1.00000000 

0.4 -0.92582010 -0.92724220 -0.92582010 

0.6 -0.86602540 -0.86755715 -0.86602540 

0.8 -0.81649658 -0.81808091 -0.81649658 

1.0 -0.77459667 -0.77618697 -0.77459667 

1.2 -0.73854895 -0.74010502 -0.73854896 

1.4 -0.70710678 -0.70859214 -0.70710680 

1.6 -0.67936622 -0.68074654 -0.67936625 

1.8 -0.65465367 -0.65589608 -0.65465372 

2.0 -0.63245553 -0.63352833 -0.63245560 

Fig. 2 demonstrates the variation of wall temperature, (0) with 

ratio of relaxation to retardation,  when Deborah number, 2 0.1 

and 1.0 . It is found that  is dependent on 2 , where  must be lesser 

than some critical value, namely c in order to attain the physically 

acceptable solution. Noticeably, (0) increases  as  come close to 

the critical values 2.47060237c  and 7.30094927c  when 

2 0.1  and 2 1.0  , respectively. As such, it is concluded that as 

2 gets larger, the c will be increased. 

Figs. 3 to 8 are plotted to explain the influence of several emerging 

parameters, i.e. the ratio of relaxation to retardation times , the 

Deborah number 
2 and the magnetic parameter M on the velocity 

and temperature profile, respectively. Meanwhile, Fig. 9 and 10 

attempted to describe the effect of the Eckert number Ec and the 

radiation parameter 
RN on the temperature profile. The velocity profile 

for these parameters is not plotted as the graph generated is unique, 

because of decoupled boundary layer Eqs. (11) and (12). 

Correspondingly, there exist one solution for skin friction coefficient, 

i.e. (0) -1.41421356f   . 

Fig. 3 presents the effect of  on the ( )f  , where increasing 

tends to retard the flow. This will increase the drag force and 

accordingly the reduction in velocity happens. In Fig. 4, the temperature 

profile is seen to increase as  increase. Noted that an increase in 

relaxation time will decrease the retardation time. Since the decrease in 

retardation time is overriding the increase in relaxation time, thus this 

results in higher temperature, thereby thickening the thermal boundary 

layer thickness.  

For larger 
2 , the velocity of fluid is noticed to increase as shown 

in Fig. 5. Oppositely, in Fig. 6, the dimensionless temperature ( )  is 

observed to slightly retard as 2 increases. This can be directly related 

to the definition of Deborah number, i.e. 
2 1a  where 2 is 

depending on the relaxation time, 
1 . Hence, higher 

1 causes the 

increment in 2 , which in turn increasing the velocity of fluid while 

decreasing the temperature. Also, for high 2 , the materials behave 

rather elastically. 
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The effect of magnetic parameter, M on velocity and temperature 

distributions are performed in Figs. 7 and 8. From Fig. 7, it is observed 

that as M increases, the velocity profile is decreases. Physically, 

higher M will strengthen the magnetic field strength. Its presence will 

produce a bulk namely Lorentz force, that consequently making 

massive reduction to the velocity of fluid and thus, lessening the 

momentum boundary layer. On the contrary, the dimensionless 

temperature in Fig. 8 is enhanced due to an increase in M . 

Fig. 9 shows the temperature profile ( )  against  for several 

values of Ec . It is noticed that as Ec increases, the temperature profile 

is also increases owing to the effect of frictional forces that produce 

heat energy in the fluid.  

The influence of radiation parameter on dimensionless temperature 

is illustrated in Fig. 10, where the temperature is an increasing function 

of RN . An increase in RN delivers extra heat to the fluid that results 

in the enhancement of temperature and thermal boundary layer 

thickness.  

Figs. 11 to 13 display the influence of the 
2,  ,  M Bi and 

RN on 

the skin friction coefficient 1/2Ref xC and local Nusselt number 

1/2Re ,x xNu  respectively. In Figs. 11 and 12, the increase of M and 
2

are found to decrease the 1/2Ref xC while increasing the 1/2Rex xNu  . On 

the other hand, the 1/2Rex xNu  is reduced for larger Bi and 
RN as 

shown in Fig. 13, representing the depletion of convective heat transfer 

rate.  Moreover, this study reveals that the graph is unique for the 
1/2Ref xC , therefore, the presence of RN and Bi are concluded to not 

possessing any influence to the drag force of fluid. 

Several parameters that pronounce significant influences on the 

numerical values of 1/2Ref xC and 1/2Rex xNu  are tabulated in Tables 2 

and 3. From Table 2, it is observed that as 2 and M increase, the 

1/2Ref xC decreases whereas an increase in  boosts up the 1/2Ref xC . 

In Table 3, the heat transfer rate is increase when ,  Ec and M are 

increased. Meanwhile, the weak heat transfer is detected for larger 

values of 
2,  ,  PrBi  and RN . 

Fig. 2 Variation of the (0) with  when 2 0.1  and 2 1.0. 

Fig. 3 Velocity profile ( )f  for various values of .

Fig. 4 Temperature profile ( )  for various values of .

Fig. 5 Velocity profile ( )f  for various values of 2 .

Fig. 6 Temperature profile ( )  for various values of 2 .
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Fig. 7 Velocity profile ( )f  for various values of .M

Fig. 8 Temperature profile ( )  for various values of .M

Fig. 9 Temperature profile ( )  for various values of .Ec

Fig. 10 Temperature profile ( )  for various values of .RN

Fig. 11 Variation of the 1/2Ref xC with 2 for various values of .M

Fig. 12 Variation of the 1/2Rex xNu  with 2 for various values of .M

Fig. 13 Variation of the 1/2Rex xNu  with 
RN for various values of .Bi

Table 2 Numerical values of 1/2Ref xC for various values of physical 

parameters. 

 2 M 1/2Ref xC

0.1 0.1 0.1 -1.04880885 

0.2 0.1 0.1 -1.00415803 

0.3 0.1 0.1 -0.96474638 

0.4 0.1 0.1 -0.92966968 

0.4 0.2 0.1 -0.97100831 

0.4 0.3 0.1 -1.01065750 

0.4 0.4 0.1 -1.04880885 

0.4 0.4 0.2 -1.09544512 

0.4 0.4 0.3 -1.14017543 

0.4 0.4 0.4 -1.18321596 
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Table 3 Numerical values of 1/2Rex xNu   for various values of physical 

parameters. 

 

Bi    2  Pr  
RN  Ec  M  1/2Rex xNu   

0.5 0.1 0.1 0.71 0.2 0.2 0.1 -0.38926871 

1.0 0.1 0.1 0.71 0.2 0.2 0.1 -0.57505679 

1.4 0.1 0.1 0.71 0.2 0.2 0.1 -0.66585560 

2.0 0.1 0.1 0.71 0.2 0.2 0.1 -0.75529924 

2.0 0.2 0.1 0.71 0.2 0.2 0.1 -0.74831132 

2.0 0.4 0.1 0.71 0.2 0.2 0.1 -0.73493100 

2.0 1.0 0.1 0.71 0.2 0.2 0.1 -0.69898542 

2.0 1.0 0.2 0.71 0.2 0.2 0.1 -0.70839617 

2.0 1.0 0.4 0.71 0.2 0.2 0.1 -0.72405424 

2.0 1.0 1.0 0.71 0.2 0.2 0.1 -0.75529924 

2.0 1.0 1.0 1.0 0.2 0.2 0.1 -0.87179816 

2.0 1.0 1.0 5.0 0.2 0.2 0.1 -1.39673468 

2.0 1.0 1.0 7.0 0.2 0.2 0.1 -1.49274065 

2.0 1.0 1.0 7.0 0.4 0.2 0.1 -1.74198047 

2.0 1.0 1.0 7.0 0.6 0.2 0.1 -1.97857064 

2.0 1.0 1.0 7.0 0.8 0.2 0.1 -2.20421759 

2.0 1.0 1.0 7.0 0.8 0.3 0.1 -2.12467015 

2.0 1.0 1.0 7.0 0.8 0.4 0.1 -2.04512263 

2.0 1.0 1.0 7.0 0.8 0.5 0.1 -1.96557474 

2.0 1.0 1.0 7.0 0.8 0.5 0.2 -1.93192362 

2.0 1.0 1.0 7.0 0.8 0.5 0.3 -1.89901460 

2.0 1.0 1.0 7.0 0.8 0.5 0.4 -1.86678146 

 

 
CONCLUSION 

 

The present study has shown how the influence of radiation parameter 

and viscous dissipation affected the boundary layer flow of MHD 

Jeffrey fluid over a stretching sheet. The significant results of this study 

can be recapitulated as below: 

 The ratio of relaxation to retardation times   is dependent 

on the Deborah number 
2 . 

 The ratio of relaxation to retardation times   pronounces the 

opposite effect to the Deborah number 
2  for both velocity 

and temperature profiles. 

 The magnetic parameter M  exhibit the opposite effect 

between velocity and temperature profiles and skin friction 

coefficient and Nusselt number. 

 The velocity profile for Ec  and 
RN  is unique. 

 The skin friction coefficient for radiation 
RN  and biot 

number Bi  is also unique. 
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