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Abstract 

The aim of this study is to model the annual maximum flow of several sites in Sabah with small 
sample sizes using the generalized extreme value (GEV) distribution. Previous studies have shown 
that the standard method of maximum likelihood estimates would give a poor estimation of the GEV 
parameters and quantiles for the small data set. This study will consider the penalized likelihood 
estimates as an alternative method to improve the inference over the standard method and retains 
the modeling flexibility. As for comparisons, we will illustrate the results of both methods to model the 
annual maximum flow in Sabah. The results show the implementation of the penalty function had the 
same effect to the GEV parameter estimates as suggested by previous studies. 
. 
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INTRODUCTION 

Generalized Extreme Value (GEV) distribution have been applied for 

numerous applications in many areas for example in hydrology 

(Coles, 2001), civil engineering design (Castillo, 2005) and in finance 

(Embrechts et al., 1997).  Therefore, the properties of estimation 

parameters need to carefully consider.  There are various approaches 

available for GEV parameters estimation such as Bayesian, estimation 

based on moments method, estimation based on likelihood method 

and much more. All available approaches have their own pros and 

cons. An ideal estimation should consist the properties of unbiased 

(the estimator is said to be unbiased when the expected parameter 

equal or almost identical to the true parameter value), efficient (the 

estimator is said to be efficient when the estimator has the minimum 

mean square error) and consistent (the estimator is said to be 

consistent when the function is well converge) (Soukissian and Tsalis, 

2015).   

Generally, the Maximum Likelihood Estimation (MLE) method is 

one of the most popular estimation methods in extreme value theory 

(EVT) for having good asymptotic properties such as asymptotic 

consistency, asymptotic efficiency, asymptotic normality and has 

unique properties in their capability to adapt to model change (Smith, 

1985).  Smith (1985) also stated that MLE can be applied to complex 

modeling situation such as non-stationarity, temporal dependence, and 

covariate effects. There are a number of previous studies using MLE 

to estimates parameters in GEV distribution such as Phien and Fang 

(1988), Nadarajah and Shiau (2005), Nadarajah and Choi (2007), 

Soukissian and Tsalis (2015) and many more.    

There are many advantages of MLE which have been mentioned 

earlier but the justification is based on large sample theory, there still 

little application on small samples sizes (Hosking et al., 1985). The 

poor performance of MLE in small samples issues is still a serious 

discussion.  The most popular study of small sample sizes using 

MLE was done by Hosking et al., (1985) and was then extended by 

Coles and Dixon (1999). Hosking et al., (1985), performed a 

simulation study concentrated on small, moderate and large sample 

sizes such as n=15,25,50,100 for 𝜉 = −0.4, −0.2,0,0.2,0.4  to study 

the Probability Weighted Moment (PWM) estimators of the GEV 

distribution and to compare with MLE and sextiles estimators. For 

smaller data set the PWM estimator shows lower variance than others.  

They also compared quantile (the inverse cumulative distribution 

function, CDF of GEV distribution) estimators.  For small data sets, 

the upper quantiles show PWM method is biased, however PWM still 

better compared to ML estimators, which shows very large biases and 

variances. They also stated that when estimating extreme quantiles 

with 𝜉 > 0 in small samples all the methods are very inaccurate. 

Coles and Dixon (1999) conducted a study to focus on the 

comparison between MLE and PWM for estimating parameters of the 

GEV distribution with small sample datasets. They found that for 

small sample sizes of extreme event, the MLE shows poor 

performance and this is confirmed the result of Hosking et al., (1985). 

They performed a study to investigate more detailed the behavior of 

MLE with small sample size and found that MLE was not performed 

well in that case. From the study, they also found some considerations 

on how to modify MLE in order to improve its performance in small 

sample issues, while maintaining its flexibility characteristics and 

properties. They proposed an alternative method to estimate GEV 

parameters involved small sample sizes of an extreme event by 

introducing a penalty function to the standard method of MLE called 

penalized maximum likelihood estimator (PMLE) method and proved 

that their method performed well compared to existing methods. The 

penalized maximum likelihood methods also have been proposed by 
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other studies for different focus;  Martin and Stedinger (2000)  

improved the GEV parameter estimates for small sample sizes; Zheng 

et al., (2014) used penalty function to allowed parameters varies 

smoothly between neighbouring sites.    

The aim of this study is to model the annual maximum flow of 

several sites in Sabah with small sample sizes using the GEV 

distribution. In the next section, we define the GEV model follows by 

the discussion of the GEV parameter estimation using the method of 

MLE and PML method. We also show simulation studies to 

understand both methods before we apply the method to our data. 

Then, we show a comparison of MLE and PML estimators in 

modeling annual maximum stream flow of several sites in Sabah. 

Finally, we used the best method to compute the prediction of extreme 

river flow in Sabah. 

METHODOLOGY 

This section discusses the model fitting of generalized extreme 

value distribution to the annual maximum flow and its parameter 

estimation. In this study, we used R software for computational 

purpose with our own written code. 

GEV Distribution 
Modeling the extreme event is usually based on asymptotic based 

theory where sample of extreme event are renormalized with sequence 

of normalization constant.  As the number of sample extreme would 

approach infinity, the distribution of the renormalized sample extreme 

converges to the GEV distribution. Recently, the GEV distribution is 

commonly used in extreme events for modeling and characterizing.  

The GEV distribution has Cumulative Distribution Function (CDF) as 

follows (Coles, 2001): 

𝐹(𝑥; 𝑢, 𝜎, 𝜉) = {
𝑒𝑥𝑝 {−(1 + 𝜉 [

𝑥−𝑢

𝜎
])
−1/𝜉

} , 𝜉 ≠ 0

𝑒𝑥𝑝 ⌊−𝑒𝑥𝑝 {−
𝑥−𝑢

𝜎
}⌋ , 𝜉 = 0

         (1) 

              

The GEV distribution consists of three parameters where 𝜇 𝜖 ℜ is the 

location parameter, 𝜎 > 0 is the scale parameter and 𝜉 𝜖 ℜ is the 

shape parameter. The GEV (𝜇, 𝜎, 𝜉) distribution has support on the set 

{𝑥: 1 + 𝜉(x − μ)/σ > 0}.  It will be a Gumbel distribution for 𝜉 = 0  

(taken as 𝜉 → 0) and whereas for , 𝜉 < 0 and  𝜉 > 0 corresponds to 

the Negative Weibull distribution and the Frechet distribution 

respectively. Choosing directly one family of GEV distributions may 

lead to a biased fit for a given data set and ignores uncertainty in the 

form of the distribution. Therefore, the generalized extreme value 

distribution is an appropriate model for the extremes which allows for 

uncertainty in the selection of the three different types. 

Maximum Likelihood estimation 

The idea of maximum likelihood method is based on maximizing 

the likelihood of the observed sample (independent random variable) 

with respect to all the parameters which can be expressed as in 

equation (2). 

      𝐿(𝜃|𝑥) = ∏ 𝑓(𝑥𝑖)
𝑛
𝑖=1                                  (2) 

where 𝑓 is the probability density function associated with distribution 

function in equation (1) which can be derived as 𝑓 = 𝑑𝐹(𝑥)/𝑑(𝑥).
Therefore, the derivation of Maximum Likelihood function for GEV 

distribution can be obtained as in equation (3). 

𝐿(𝜃|𝑥) =

{
 

 ∏
1

𝜎
(1 + 𝜉

𝑥−𝑢

𝜎
)
−1−

1

𝜉
𝑒 (− (1 + 𝜉

𝑥−𝑢

𝜎
)
−
1

𝜉
)𝑛

𝑖=1 , 𝜉 ≠ 0

∏
1

𝜎
(𝑒𝑥𝑝 (−

𝑥−𝑢

𝜎
)) 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−

𝑥−𝑢

𝜎
))𝑛

𝑖=1 , 𝜉 = 0

    (3)

Penalized Maximum Likelihood Estimator  
Modified MLE or Penalized Maximum Likelihood (PML) 

estimator is a standard application to non-parametric smoothing, in 

which a function that penalizes roughness is going to balance the 

appropriate likelihood. Penalized likelihood function is defined as 

𝐿𝑃𝑒𝑛 = 𝐿(𝜇, 𝜎, 𝜉) × P(𝜉)  . In this study we used a penalty function as 

follows (Coles and Dixon, 1999): 

𝑃(𝜉) = {

1, 𝜉 ≤ 0

𝑒𝑥𝑝 (−𝜆 (
1

1−𝜉
− 1)

𝛼
) , 0 < 𝜉 < 1

0, 𝜉 ≥ 1
            (4) 

According to Coles and Dixon (1999), the suitable value of 𝛼 and 𝜆 is 

equal to 1 and 𝐿(𝜇, 𝜎, 𝜉)  is obtained from MLE of the GEV 

distribution.  Therefore, small sample cases of MLE can be overcome 

by applying methods of PML estimator.  The MLE of GEV 

distribution yield the standard asymptotic result which all applicable 

to the PML estimator. Coles and Dixon (1999) conducted simulations 

to study the comparison of small sample behavior (n=25) of these 

PML estimators with the classical ML and PWM estimators. They 

found that when 𝜉 is negative the behavior of PML estimator is almost 

identical to MLE estimator.  However, when 𝜉 is positive, the 

behavior of PML estimator is almost identical PWM) estimator, 

therefore the PML estimator will have the characteristics of smaller 

variance at the expense of negative bias.  Thus, in the context of bias 

and variance the PML estimator seems to be good as the PWM 

estimator.   

Probability Weighted Moments 
In this study, the initial values of the parameters in both 

likelihood function of MLE and PML were computed using a 

probability weighted moments. 

PWM introduced by Hosking et al., (1985).  For  𝑟 = 0,1,2 , the 

plotting position estimator 𝑏𝑟 =
1

𝑛
∑ 𝑥𝑖[𝐹𝑖]

𝑟𝑛
𝑖=1  are best evaluated at 

𝐹𝑖 =
𝑖−0.35

𝑛
 . Therefore, the GEV parameters are then estimates using 

these equation: 

           𝜉 = 7.8590𝑐 + 2.9554𝑐2,                        (5) 

𝜎̂ =
(2𝑏1−𝑏0 )𝜉̂

Γ(1− 𝜉̂)( 2𝜉̂ −1)
 ,                                 (6) 

   𝑢̂ = 𝑏0 −
𝜎̂

𝜉̂
{Γ(1 − 𝜉) − 1}                           (7) 

   𝑐 =
2𝑏1−𝑏0

3𝑏1−𝑏0
−
𝑙𝑜𝑔2

𝑙𝑜𝑔3
                                     (8) 

Return level 
Further application of above method is for estimation of the 

extreme quantiles or the return level. By inverting the equation (1) the 
1- p quantile of GEV distribution can be obtained by using equation 

(9) substituting estimates of ( , ,  ) into (4) for any values of p ; 

𝑧𝑝 =

{
 
 

 
 
𝑢 −

𝜎


(1 − [− log(1 − 𝑝)]

−
) ,  ≠ 0

𝑢 − 𝜎 log[− log(1 − 𝑝)] ,  = 0

   (9) 

For example, 𝑧0.01 corresponds to the level expected to be exceeded in 

every 100 years. 

Simulation Study 
We conducted a simulation study to explore the GEV parameter 

estimates method; maximum likelihood method and penalized 

likelihood method porposed by Coles and Dixon (1999). By using R 

software, we simulate extreme event of variable 𝑋 for a sample size of 

50 and we repeated for 5000 times. We assume that the random 

variable 𝑋 follows a GEV (𝜇 = 0, 𝜎 = 1,  = 0.2). We only consider 

𝜉 > 0 as for negative value of shape parameter both methods of MLE 

and PML almost identical. Both methods are then compared on the 

bias and root mean square error of the parameter estimates and also 

quantiles of the GEV distribution. The results are present in Table 1 
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for bias, and Table 2 for root mean square error. The results show that 

the PML performed better than MLE in terms of bias and root mean 

square error, clearly seen on quantile estimates. 

Table 1 The bias of GEV parameter estimates and quantile 
estimates of MLE and PML method 

Method 𝜇 𝜎 𝜉 𝑞0.01 𝑞0.005 
MLE 0.01 -0.02 0.00 0.31 0.66 
PML 0.01 -0.02 -0.03 -0.24 -0.23 

Table 2 The root mean square error of the parameter estimates 
and the quantile estimates of MLE and PML 

Method 𝝁 𝝈 𝝃 𝒒𝟎.𝟎𝟏 𝒒𝟎.𝟎𝟎𝟓 
MLE 0.16 0.13 0.13 3.04 4.74 
PML 0.17 0.13 0.12 2.34 3.48 

Application to stream flow data in Sabah 
This study used a secondary data obtained from Hydrology 

Department of Sabah.  We have an annual maximum streamflow (m3s-

1) data from several sites in Sabah.  The characteristics of the selected 

stations for this study are presented in the Table 3 which provide the 

number of the stations, the name of the river and the locations for each 

selected stations.  The data consists of 18 sites in Sabah with a 

different number of observations for each site. All number of 

observations used in this study indicated small sample sizes (below 

than 50). 

We fit the GEV distribution to the annual maximum flow for each 

site. Then we examined the goodness of fit using the Q-Q plot with 

95% tolerance intervals. The results show that the GEV fit seems to 

be appropriate for all data. Fig. 1 shows an example of Q-Q plot with 

95% tolerance interval indicates that the GEV fits the annual 

maximum flow data very well at Station Padas using MLE method for 

parameter estimations. Fig. 2 shows the same plot but by using the 

PML method, indicates that the GEV fits the data well. 

We used the maximum likelihood method and penalized 

maximum likelihood method for GEV parameter estimations. For 

comparisons, we present the results in Table 4, specifically the 

estimates of shape parameter estimates, 𝜉 . For a negative value of 𝜉, 

the PML estimator is almost identical to ML estimator.  This can be 

seen on sites Kinabatangan at Pagar, Labuk, Milian, Padas at 

Beaufort, Padas at Kemabong, Papar at Kogopon, Pegalan, Sook and 

Tungud as shown in the table.  Our results were consistent with 

previous studies where the PML method shrinks the shape parameter 

towards zero. 

For application purposes, we then computed the estimates of 100 

years return value of annual maximum flow at each site. Fig. 3 shows 

the return value estimates of annual maximum data sites obtained by 

using Maximum Likelihood (MLE) and Penalized Maximum 

Likelihood (PML). 

Fig. 1  Q-Q plot with 95% tolerance interval shows well fit of GEV 
distribution for annual maximum flow at Station Padas (MLE method) 

Fig. 2  Q-Q plot with 95% tolerance interval shows well fit of GEV 
distribution for annual maximum flow at Station Padas (PML method) 

Fig. 3  Return value estimate for Sabah annual maximum data using 
PWM plotted against MLE. 

Table 3 Stream flows data of several site in Sabah. 

Bil. No. Stn Station Name Lat Long Duration 

1 6670401 Sg. Bengkoka 6.622 117.038 1972 - 2016 

2 6468402 Sg. Bongan 6.443 116.813 1988 - 2016 

3 5375401 
Sg. Kinabatangan 
at Balat 5.31 117.599 1978 - 2015 

4 5275401 
Sg. Kinabatangan 
at Pagar 5.231 117.5 1986 - 2016 

5 5074401 Sg. Kuamut 5.08 117.442 1969 - 2015 

6 5872401 Sg. Labuk 5.855 117.352 1969 - 2015 

7 4955403 Sg. Mengalong 4.992 115.577 1983 - 2015 

8 5373401 Sg. Milian 5.304 117.318 1969 - 2015 

9 5357403 
Sg. Padas at 
Beaufort  5.353 115.724 1981 - 2015 

10 4959401 
Sg. Padas at 
Kemabong 4.917 115.92 1969 - 2015 

11 5760402 
Sg. Papar at 
Kogopon 5.707 116.038 1969 - 2015 

12 5760401 
Sg. Papar at 
Kaiduan 5.769 116.094 1969 - 2015 

13 5261401 Sg. Pegalan 5.28 116.139 1969 - 2015 

14 4764401 Sg. Sapulut 4.689 116.481 1990 - 2016 

15 5261402 Sg. Sook 5.263 116.146 1969 - 2015 

16 6172401 Sg. Sugut 6.196 117.237 1984 - 2015 

17 6073402 Sg. Tungud  6.05 117.327 1986 - 2015 

18 6364401 Sg. Wariu  6.324 116.483 1969 - 2015 
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Table 4 Shape parameter estimates of  MLE and PML. 

Bil Sites Years 
𝝃̂

MLE PML 

1 Sg. Bengkoka 45 0.32 0.26 

2 Sg. Bongan 29 0.32 0.26 

3 Sg. Kinabatangan at Balat 38 0.11 0.10 

4 Sg. Kinabatangan at Pagar 31 -0.27 -0.28 

5 Sg. Kuamut 47 0.36 0.31 

6 Sg. Labuk 47 -0.02 -0.03 

7 Sg. Mengalong 32 -0.34 -0.34 

8 Sg. Milian 47 -0.05 -0.05 

9 Sg. Padas at Beaufort  35 -0.18 -0.19 

10 Sg. Padas at Kemabong 47 -0.06 -0.07 

11 Sg. Papar at Kogopon 47 0.00 0.00 

12 Sg. Papar at Kaiduan 47 -0.06 -0.07 

13 Sg. Pegalan 47 -0.02 -0.02 

14 Sg. Sapulut 27 -0.15 -0.17 

15 Sg. Sook 46 -0.19 -0.19 

16 Sg. Sugut 32 0.23 0.19 

17 Sg. Tungud  30 -0.56 -0.59 

18 Sg. Wariu  46 0.09 0.01 

Table 5 Return level estimate  

Sites 𝒒𝟎.𝟎𝟏 

Sg. Bengkoka 2311.80 

Sg. Bongan 830.10 

Sg. Kinabatangan at Balat 3309.13 

Sg. Kinabatangan at Pagar 2214.74 

Sg. Kuamut 4489.75 

Sg. Labuk 3248.75 

Sg. Megalong 456.50 

Sg. Milian 2029.70 

Sg. Padas at Beaufort 1496.37 

Sg. Padas at Kemabong 1891.17 

Sg. Papar at Kaiduan 390.35 

Sg. Papar at Kogopon 1032.21 

Sg. Pegalan 832.39 

Sg. Sapulut 911.10 

Sg. Sook 333.53 

Sg. Sungud 3676.63 

Sg. Tungud 910.14 

Sg. Wariu 485.93 

CONCLUSION 

In this study, we have a data of annual maximum flow with small 

sample sizes at each site. The GEV distribution is an appropriate 

model for this extreme data. However, an appropriate method should 

be used to estimate the GEV parameters since its involved small 

sample size of an extreme event as discussed by several past studies. 

This study applied the penalized likelihood approach to estimate the 

GEV parameters since we have the small sample size of annual 

maximum flow at all sites. Based on application to 18 sites, it is 

shown that the penalized likelihood method improved the 

performance of the MLE. Our results show the implementation of the 

penalty function of the penalized likelihood method had the same 

effect on the GEV parameter estimates as suggested by previous 

studies (shrink the shape parameter estimates towards zero). This can 

give a realistic of the extreme quantile estimates. The penalized 

likelihood approach is a modification of the standard maximum 

likelihood method which can be easily implemented even with a 

complex model. For further work, this study will consider the effect 

of the covariate in the model.  

ACKNOWLEDGEMENT 

I am greatly appreciate the Hydrology Department of Sabah for 

providing me the data of streamflows.   

REFERENCES 

Castillo, E., Hadi, A. S., Balakrishnan, N., Sarabia, J. M. 2005. Extreme Value 
and Related Models with Applications in Engineering and Science. New 

Jersey: Wiley. 

Coles, S. G., 2001. An Introduction to Statistical Modeling of Extreme Values. 
Wiley, Hoboken: Springer.  

Coles, S. G., Dixon, M. J. 1999. Likelihood based inference for extreme value 

models. Extremes, 2(1), 5-23. 
Embrechts, P., Klüppelberg, C., Mikosch, T. 1997. Modelling Extremal Events 

for Insurance and Finance. Berlin: Springer Verlag. 

Hosking, J. R. M., Wallis, J. R., Wood, E. F. 1985.  Estimation of the 
generalized extreme value distribution by the method of probability 

weighted moments. Technometrics, 27, 251-261. 

Martins, E. S., Stedinger, J. R. 2000. Generalized maximum likelihood 
generalized extreme value quantile estimators for hydrologic data. Water 

Resources Research, 36(3), 737-744. 

Nadarajah, S., Choi, D. 2007. Maximum daily rainfall in South Korea. Journal 
of Earth System Science, 116(4), 311-320.  

Nadarajah, S., Shiau, J. T. 2005. Analysis of extreme flood events for the 
Pachang River, Taiwan. Water Resource Management, 9(4), 363–374.  

Phien, H. N., Fang, T. S. E. 1989. Maximum likelihood estimation of the 

parameters and quantiles of the general extreme value distribution from 
censored samples. Journal of Hydrology, 105, 139-155. 

Smith, R. L., 1985. Maximum likelihood estimation in a class of non-regular 

cases. Biometrika, 72, 67–92. 
Soukissian, T., Tsalis, C. 2015. The effect of the generalized extreme value 

distribution parameter estimation methods in extreme wind speed prediction. 

Journal of the International Society for the Prevention and Mitigation of 
Natural Hazards, 78(3), 1777-1809. 

Zheng, W., Zhang, J., Liu, H., Li, J. 2014. A penalized maximum likelihood 

approach for m-year precipitation return values estimation with lattice spatial 
data. IEEE/CIC International Conference on Communications in China - 

Workshops (CIC/ICCC). 13 October 2014. Shanghai: IEEE, 16-20. 

566

http://www.foxitsoftware.com/shopping



