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Abstract 

This research investigates on the numerical methods for computing the greatest common divisors 
(GCD) of two polynomials in the orthogonal basis without having to convert to the power series form. 
Previous implementations were conducted using the Gauss Elimination with partial pivoting (GEPP) 
and QR Householder algorithms, respectively. This work proceeds to seek for a better approximate 
solution by comparing the results of the implementations with the QR with column pivoting (QRCP) 
algorithm. The results reveal that QRCP is as competent as the GEPP algorithm, up to a certain 
degree, giving a reasonably good approximate solution. It is also found that normalizing the columns 
of the associated coefficient matrix slightly reduces the condition number of the matrix but has no 
significant effect on the GCD solutions when applying the GEPP and QR Householder algorithms. 
However equilibration of the columns by computing its ∞-norm is capable to improve the solution 
when QRCP is applied. Comparing the three algorithms on some test problems, QR Householder 
outperforms the rest and is able to give a good approximate solution in the worst case condition when 
the smallest element of the matrix is 1, the entries ranging up to 15 digits integers. 

Keywords: Greatest common divisor (GCD), Gauss elimination, QR decomposition, over 
determined systems, normalization  
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INTRODUCTION 

Problem arises in image processing [1, 2], control theory [3], and 
the calculation of multiple roots of a polynomial [4] require the 
computation of the greatest common divisor (GCD) of two 
poynomials. Generally, polynomials in the orthogonal basis may be 
better conditioned than that of the power series form when finding 
polynomial roots. The representation of polynomials in the orthogonal 
basis is very useful in the numeric computations due to its well-
conditioned property which when applied using appropriate numerical 
methods give better approximation to the root finding problem.  

The theory and applications of polynomials in the generalized 
form have been well studied by Barnett [5, 6, 7] as proposed in 
several of his works. Aris [8] and Ahmad et al. [9] has implemented 
the theories and analytical results in Barnett [5, 6, 7] by presenting a 
new symbolic algorithm for computing the GCD of polynomials in the 
orthogonal basis, in particular the Legendre and Chebyshev 
polynomial basis. The work have applied the modular homomorphic 
image scheme so as to avoid multiprecision operations involving very 
large integers and rational numbers in the coefficients of the 
polynomials represented in its orthogonal form. An improved 
algorithm that combines the modular approach with rational number 
computations at different stages of the algorithm had also been shown 
in Aris [10]. From these works, the computations were succesfully 
done in the orthogonal polynomial basis, rather then converting to the 
power series form. Thus, in the exact computation environment, the 
theoretical and emprical aspects of finding the GCD of certain class of 
polynomials in the orthogonal basis using the theorem of Barnett were 
well achieved and presented. 

The question of whether it is also possible to apply appropriate 
numerical computational tools for solving the GCD or other related 
problems involving orthogonal basis polynomials, without having to 
convert to the power series basis remains a challenging task. The 
comrade matrix approach reduces to a linear algebra problem of 
finding the rank and solving overdetermined systems of linear 
equations. The motivation to proceed from previous works in Aris [8] 
and Ahmad et al. [9] using the comrade matrix approach under the 
floating point environment is not only for solving the GCD, but also 
to further investigate on the strength and limitations of the chosen 
numerical methods of solving the corresponding systems of equations. 
The main task is to develop a suitable technique that can solve the 
problem when the entries of the coefficient matrix involve very large 
integers with a large disparity in the magnitude of the smallest and 
largest entries of the matrix. 

In this paper, the task of computing the GCD of two polynomials 
relative to an orthogonal basis, in particular the shifted Chebyshev 
polynomial basis, using the comrade matrix approach is investigated. 
Performing computations in the floating point environment, the 
ultimate aim of the research is to propose appropriate numerical 
methods for solving the problem. As in Isa et. al. [11], apart from 
getting a good approximate solution, this research intends to 
investigate how the input data from the polynomial coefficients or the 
coefficient matrix entries can affect the accuracy of the solutions. 
Therefore, besides the stability criterion of the chosen numerical 
methods, the conditioning property of the coefficient matrix is also 
considered.  

The method of computing the GCD of two polynomials 𝑎(𝑥) and 
𝑏(𝑥) based on comrade matrix approach leads to solving 
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corresponding systems of linear equations and the work done in two 
stages. In particular, the degree of GCD of the polynomials which 
equal to the rank loss of the coefficient matrix is initially determined, 
after which, the coefficients of the GCD are obtained from solving the 
associated systems. Considering the conditioning property of 
coefficient matrix, appropriate stable methods are needed to solve the 
systems of equations which is constructed from the comrade matrix. 
In this paper, results using the well-known Gauss elimination method 
with partial pivoting (GEPP), the QR Householder decomposition and 
the QR Householder with column pivoting (QRCP) algorithm for 
solving systems of linear equations are implemented to find the GCD 
of certain class of polynomials and the results presented. 
 
THE COMRADE MATRIX APPROACH 
 

The comrade matrix was introduced as the analogue of the 
companion matrix when a polynomial is expressed in terms of a basis 
set of orthogonal polynomials. It is shown that the determination of 
finding the greatest common divisor (GCD) of two or more 
polynomials can be extended to the case of generalized polynomials 
by using the comrade matrix (Barnett, 1984). Let 
 

𝑝𝑖(𝑥) = ∑ 𝑝𝑖𝑗
𝑛
𝑖=0 𝑥𝑗 .                                                                      (1) 

 
be a set of real orthogonal polynomials defined by the relationship of 
 

𝑝0(𝑥) = 1, 
𝑝1(𝑥) = 𝛼0𝑥 + 𝛽0, 
𝑝𝑖+1(𝑥) = (𝛼𝑖(𝑥) + 𝛽𝑖(𝑥))𝑝𝑖(𝑥) − 𝛾𝑖𝑝𝑖−1(𝑥).                           (2) 

 
for 𝑖 = 1, 2, 3,… , 𝑛 − 1with 𝛼𝑖 > 0, 𝛽𝑖 > 0, 𝛾𝑖 > 0. Any given 𝑛th 
degree univariate polynomial in 𝑥 can be uniquely expressed as a 
linear combination of the set 𝑝0(𝑥), 𝑝1(𝑥), … , 𝑝𝑛(𝑥). 

 
Consider two arbitrary polynomials �̃�(𝑥) = �̃�0 + �̃�1𝑥 + �̃�𝑛𝑥𝑛 and 

�̃�(𝑥) = �̃�0 + �̃�1𝑥 + ⋯+ �̃�𝑚𝑥𝑚 with coefficient over a field can be 
written as 

 
 𝑎(𝑥) = 𝑎0𝑝0(𝑥) + 𝑎1𝑝1(𝑥) + ⋯+ 𝑎𝑛𝑝𝑛(𝑥). 
 𝑏(𝑥) = 𝑏0𝑝0(𝑥) + 𝑏1𝑝1(𝑥) + ⋯+ 𝑏𝑚𝑝𝑚(𝑥).                                

(3) 
 
With no loss of generality, let 𝑎𝑛 = 1 and 𝑚 < 𝑛. If the values of 

𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 for 𝑖 = 0, 1, … , 𝑛 − 1 are known, the comrade matrix for 
𝑎(𝑥) is an 𝑛 × 𝑛 matrix given by 

 
 

[
 
 
 
 
 
 
 
 
 
 
 

−𝛽0

𝛼0

1

𝛼0
⋯ 0 ⋯ ⋯ ⋯ 0

𝛾1

𝛼1

−𝛽1

𝛼1

1

𝛼1
0 ⋯ ⋯ ⋯ 0

0
𝛾2

𝛼2

−𝛽2

𝛼2

1

𝛼2
⋯ ⋯ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋯ ⋯ ⋯ ⋮

0 0 0 0 ⋯ ⋯ ⋯
1

𝛼𝑛−2

−𝑎0

𝑎𝑛𝛼𝑛−1
⋯ ⋯ ⋯ ⋯

−𝑎𝑛−3

𝑎𝑛𝛼𝑛−1

−𝑎𝑛−2 + 𝑎𝑛𝛾𝑛−1

𝑎𝑛𝛼𝑛−1

−𝑎𝑛−1 − 𝑎𝑛𝛽𝑛−1

𝑎𝑛𝛼𝑛−1 ]
 
 
 
 
 
 
 
 
 
 
 

 

              (4) 
Constructing the system of equations 
If 𝐴 is the comrade matrix given as above, define  
 

𝑏(𝐴) = 𝑏0𝐼 + 𝑏1𝑝1(𝐴) + ⋯+ 𝑏𝑚𝑝𝑚(𝐴).              (5) 
The rows of 𝑏(𝐴) are respectively 𝑟0 = [𝑏0, 𝑏1, … , 𝑏𝑚, … , 𝑏𝑛−1], 𝑟1 =
𝑟0𝑝1(𝐴),… , 𝑟𝑛−1 = 𝑟0𝑝𝑛−1(𝐴). Using the recurrence relation defined 
in (2), we obtain the rows in term of the comrade matrix and 
recurrence relation such that: 
 

𝑟0 = (𝑏0, 𝑏1, … , 𝑏𝑚, 0 … , 0), 
       𝑟1 = 𝑟0(𝛼0𝐴),                                                                   

𝑟𝑖 = 𝑟𝑖−1(𝛼𝑖−1𝐴 + 𝛽𝑖−1𝐼) − 𝛾𝑖−1𝑟𝑖−2,                                         (6) 
 

for 𝑖 = 2,… , 𝑛. It is known [6] that 𝑘 = 𝑛 − rank[𝑏(𝐴)  ] is the 
degree of the GCD of 𝑎(𝑥) and 𝑏(𝑥) such that 
 

𝑑(𝑥) = 𝑑0𝑝0(𝑥) + 𝑑1𝑝1(𝑥) + ⋯+ 𝑝𝑘(𝑥).                                         
(7) 

 

Theorem 1 For 𝑖 = 1, 2,… , 𝑛, let 𝑐𝑖 be the 𝑖𝑡ℎ column of 𝑏(𝐴). The 
columns 𝑐𝑘+1, … , 𝑐𝑛 are linearly independent and the coefficients 
𝑑0, … , 𝑑𝑘−1 in (7) are given by 
 
      𝑐𝑖 = 𝑑𝑖−1𝑐𝑘+1 + ∑ 𝑥𝑖𝑗𝑐𝑗      𝑖 = 1, 2,… , 𝑘𝑛

𝑘+2  for some 𝑥𝑖𝑗                
(8) 
 
The k-system of equations in (8) is described by the augmented 
matrix 
 
     (𝑐𝑘+1 ⋮ 𝑐𝑘+2 ⋮ … ⋮ 𝑐𝑛 ∥ 𝑐1 ⋮ … ⋮ 𝑐𝑘)           
(9) 
which is 
 

   

(

 
 

𝑐1,𝑘+1 𝑐1,𝑘+2 … 𝑐1,𝑛

𝑐2,𝑘+1 𝑐2,𝑘+2 … 𝑐2,𝑛

⋮ ⋮ … ⋮

𝑐𝑛,𝑘+1 𝑐𝑛,𝑘+2 … 𝑐𝑛,𝑛)

 
 

(

 
 

𝑥𝑖,𝑘+1

𝑥𝑖,𝑘+2

⋮

𝑥𝑖𝑛 )

 
 

=

(

 
 

𝑐1𝑖

𝑐2𝑖

⋮

𝑐𝑛𝑖)

 
 

                    

(10) 
 
for each 𝑖 = 1, 2,… , 𝑘 and 𝑥𝑖,𝑘+1 = 𝑑𝑖−1. 

The computation of the rank of 𝑏(𝐴) and the coefficient of GCD, 
can be computed simultaneously from (9) and (10). The column of 
matrix 𝑏(𝐴) is rearranged to produce a new matrix so that the 𝑗𝑡ℎ 
column of 𝑏(𝐴) is the 𝑛 − (𝑗 − 1)𝑡ℎ column of the new matrix, say 
𝐿(0) i.e: 

 
𝑙𝑛−(𝑗−1)
0 = 𝑐𝑗 for 𝑗 = 1, 2,… , 𝑛. 

 
Reducing 𝐿(0) to upper row echelon form by s steps gives the 

matrix 
 

𝐿(𝑠) =

(

 
 
 
 
 
 

𝑙11
(𝑠)

𝑙12
(𝑠)

… 𝑙1𝑟
(𝑠)

⋮ 𝑙1,𝑟+1
(𝑠)

… 𝑙1,𝑟+𝑘
(𝑠)

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

0 0 … 𝑙𝑟𝑟
(𝑠)

⋮ 𝑙𝑟,𝑟+1
(𝑠)

… 𝑙𝑟,𝑟+𝑘
(𝑠)

0 0 … 0 ⋮ 0 … 0

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

0 0 … 0 ⋮ 0 … 0 )

 
 
 
 
 
 

. 

              (11) 
such that 𝑟 = rank(𝐿(0)). If 𝑘 = 𝑛 − 𝑟, the solution to the coefficient 
of 𝑑(𝑥) is given as follows: 
 
       𝑑𝑘−1 = 𝑙𝑟,𝑟+𝑖

𝑠 Inv (𝑙𝑟𝑟
(𝑠)

), 
       𝑑𝑘 = 1 
 
for each 𝑖 = 1, 2,… , 𝑘. If 𝑟 = 𝑛, then the degree of 𝑑(𝑥) = 0 which 
implies that GCD is a unit element. 
 
3-terms recurrence relation for the Chebyshev basis 

The shifted Chebyshev polynomials of the first kind is orthogonal 
defined by: 

 
𝑇𝑛

∗(𝑥) = 𝑇𝑛(2𝑥 − 1)                                                                 
(12) 

 
Where 
 

𝑇𝑛
∗(𝑥) = cos[𝑛 cos−1(2𝑥 − 1)] = 𝑇𝑛(2𝑥 − 1)           (13) 
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The recurrence relation for the polynomial is 
 
        𝑇0

∗(𝑥) = 1,  
         𝑇1

∗(𝑥) = 2𝑥 − 1,  
𝑇𝑛+1

∗ (𝑥) = (4𝑥 − 2)𝑇𝑛
∗(𝑥) − 𝑇𝑛−1

∗ (𝑥)            (14) 
gives 𝛼0 = 2,𝛽0 = 2, 𝛼𝑛 = 4, 𝛽𝑛 = −2, 𝛾𝑛 = 1, for 𝑛 = 1,2, … , 𝑛. 
 

Example 1: 

Consider the polynomials in shifted chebyshev basis  
 

𝑎(𝑥) = 𝑝6(𝑥) − 72𝑝5(𝑥)+1402𝑝4(𝑥)+3480𝑝3(𝑥) 
−299377𝑝2(𝑥)+1931952𝑝1(𝑥) − 1637386  

and 
𝑏(𝑥) = 𝑝5(𝑥)−6𝑝4(𝑥)−1875𝑝3(𝑥)+17976𝑝2(𝑥)  

 +485714𝑝1(𝑥) − 501810 
With the value of each 𝛼, 𝛽, and 𝛾 as well as the coefficients of 
polynomial 𝑎(𝑥) known, the comrade matrix in (4) can be constructed 
as below, 
 

[
 
 
 
 
 

0.5 0.5 0 0 0 0
0.25 0.5 0.25 0 0 0
0 0.25 0.5 0.25 0 0
0 0 0.25 0.5 0.25 0
0 0 0 0.25 0.25 0.25

409346 −482988 74844.25 −870 −320.25 18.5]
 
 
 
 
 

 

 
From the comrade matrix, with the coefficients of polynomial 𝑏(𝑥) 
known, then the 𝑏(𝐴) matrix is constructed. By Theorem 1, the 𝑏(𝐴) 
matrix is rearranged so that a coefficient matrix is obtained i.e: 
 

[
 
 
 
 
 
1 −6 −1875 17976 485714 −501810
34 −1644 5370 409584 −973084 559740
803 −42258 291495 9193128 −64643018  55199850
15524 −831864 6351060 175638624 −1430791544 1249618200
285061 −15355806 120491745 3213894936 −27252104806 23932788870
5153062 −278046852 2200175790 58033455312 −498213904852 438253167540]

 
 
 
 
 

 

 
The polynomials in this example is of degree 5 and 6 repectively. 

There is a large disparity in the sizes of the coefficients of the 
polynomials, considering monic polynomials wth coefficient of the 
highest degree terms equals 1. The smallest entry of the matrix 𝑏(𝐴)  
is 1 while the largest entry has at least 15 digits. The matrix is ill 
conditioned. Preconditioning may be required in order to obtain a 
good approximate solution. 

Let deg(𝑎(𝑥)) = 𝑛 and 𝑑(𝑥) = gcd(𝑎(𝑥), 𝑏(𝑥)). Here, we have    
𝑘 = deg (𝑑(𝑥)) = 𝑛 − rank[𝑏(𝐴)]. In this paper, we consider the 
class of polynomials with big GCD in which case 𝑘 has to be at least 
n/2, such that the coefficient matrix has small rank. We expect this to 
be the worst case, whereby roundoff errors are accumulated in the 
reduction and decomposition process. 

The numerical methods considered in this work are Gauss 
Elimination with partial pivoting (GEPP), QR Householder 
decompositions and QR Householder with column pivoting (QRCP). 
Even though the GEPP method is not always stable, it is the simplest 
method as it can simultaneously determine the rank and reduces the 
coefficient matrix to its reduced form (11). From the rank, an 
augmented matrix representing the reduced systems of equations can 
be determined. Consequently, the desired coefficients of the GCD can 
be obtained directly from the reduced triangular matrix via backward 
substitutions. However, GEPP, is expected to be less appropriate and 
unstable for large matrices due to the accumulation of roundoff errors 
in the reduction process. The application of QR decomposition and 
QR with column pivoting which are known to be stable and widely 
used in solving the least square and over determined systems [12, 13, 
14] are investigated and comparison between these algorithms is 
conducted. 
 
 
RESULTS AND DISCUSSION 

 
The test polynomials are generated by converting from power 

series form such that the GCD of the polynomials is at least half the 
degree of the higher degree polynomial. In this paper, we present the 

results on the effects of partial pivoting in Gauss elimination, column 
pivoting in QR decomposition and normalization of the coefficient 
matrix columns on the condition number and the approximate solution 
of the GCD. 
 

Table 1 Test examples of some polynomials (big GCD cases). 
 

Test 

Examples 
Polynomials relative to the Chebyshev basis 

Test 1 
(degree 
a(x)=6, 
rank =2) 

𝑎(𝑥)
= 𝑝6(𝑥) − 72𝑝5(𝑥)+1402𝑝4(𝑥)+3480𝑝3(𝑥)−299377𝑝2(𝑥) 
+1931952𝑝1(𝑥) − 1637386 
𝑏(𝑥) = 𝑝5(𝑥)−6𝑝4(𝑥)−1875𝑝3(𝑥)+17976𝑝2(𝑥) 
+485714𝑝1(𝑥) − 501810 
 
Greatest Common Divisor of 𝑎(𝑥) and 𝑏(𝑥) is 
𝑑(𝑥) = 𝑝4(𝑥)−48𝑝3(𝑥)+140𝑝2(𝑥)+12144𝑝1(𝑥) − 12237 
 

Test 2 
(degree 
a(x)=6, 
rank=2) 

𝑎(𝑥) = 𝑝6(𝑥) + 128𝑝5(𝑥)+4794𝑝4(𝑥)+12416𝑝3(𝑥) 
−2118385𝑝2(𝑥)−18444544𝑝1(𝑥) + 86900790 
𝑏(𝑥) = 𝑝5(𝑥)+62𝑝4(𝑥)+125𝑝3(𝑥)−39672𝑝2(𝑥) 
−184446𝑝1(𝑥) + 3541690 
 
Greatest Common Divisor of 𝑎(𝑥) and 𝑏(𝑥) is 
𝑑(𝑥) = 𝑝4(𝑥)+76𝑝3(𝑥)+1188𝑝2(𝑥)−23116𝑝1(𝑥) 
−254629 
 

Test 3 
(degree 
a(x)=7, 
rank=2) 

𝑎(𝑥) = 𝑝7(𝑥) + 162𝑝6(𝑥) + 9179𝑝5(𝑥)+190452𝑝4(𝑥) 
−184215𝑝3(𝑥)−37744002𝑝2(𝑥)−4248645𝑝1(𝑥) 
+528581868 
𝑏(𝑥) = 𝑝6(𝑥) + 112𝑝5(𝑥)+3546𝑝4(𝑥)+3760𝑝3(𝑥) 
−850801𝑝2(𝑥)+2699488𝑝1(𝑥) + 3550614 
 
Greatest Common Divisor of 𝑎(𝑥) and 𝑏(𝑥) is 
𝑑(𝑥) = 𝑝4(𝑥)+64𝑝3(𝑥)+380𝑝2(𝑥) − 20544𝑝1(𝑥) + 48259 

 

Test 4 
(degree 
a(x)=7, 
rank=3) 

𝑎(𝑥) = 𝑝7(𝑥) + 38𝑝6(𝑥) − 1221𝑝5(𝑥)−59492𝑝4(𝑥) 
+10825𝑝3(𝑥)+18622522𝑝2(𝑥)+89447035𝑝1(𝑥) 
−548421628 
𝑏(𝑥) = 𝑝6(𝑥) + 12𝑝5(𝑥)−1790𝑝4(𝑥)−19620𝑝3(𝑥) 
+888047𝑝2(𝑥)+5696664𝑝1(𝑥) − 72623602 
 
Greatest Common Divisor of 𝑎(𝑥) and 𝑏(𝑥) is 
𝑑(𝑥) = 𝑝5(𝑥)+26𝑝4(𝑥)−1427𝑝3(𝑥)−39624𝑝2(𝑥) 
+334738𝑝1(𝑥) + 5211310 
 

Test 5 
(degree 
a(x)=7, 
rank=3) 

𝑎(𝑥) = 𝑝7(𝑥) − 42𝑝6(𝑥) + 155𝑝5(𝑥)+11964𝑝4(𝑥) 
−154071𝑝3(𝑥)+505482𝑝2(𝑥)+153915𝑝1(𝑥) − 517404 
𝑏(𝑥) = 𝑝6(𝑥) − 8𝑝5(𝑥)−822𝑝4(𝑥)+5400𝑝3(𝑥) 
+141007𝑝2(𝑥)−1152272𝑝1(𝑥) + 1006694 
 
Greatest Common Divisor of 𝑎(𝑥) and 𝑏(𝑥) is 
𝑑(𝑥) = 𝑝4(𝑥)−16𝑝3(𝑥)−388𝑝2(𝑥) + 3600𝑝1(𝑥) − 3197 
 

 
 

Table 2  Example of some polynomials (small rank, big GCD cases). 
 

Test 6 
(degree 
a(x)=8, 
rank=1) 

𝑎(𝑥) = 𝑝8(𝑥) − 24𝑝7(𝑥) − 616𝑝6(𝑥) + 15672𝑝5(𝑥) 
+41692𝑝4(𝑥)−2092824𝑝3(𝑥)+8649256𝑝2(𝑥) 
+2077176𝑝1(𝑥) − 8690333 
𝑏(𝑥) = 𝑝7(𝑥) − 18𝑝6(𝑥) − 725𝑝5(𝑥)11340+𝑝4(𝑥) 
+110457𝑝3(𝑥)−1441422𝑝2(𝑥)−109733𝑝1(𝑥) + 1430100 

 
Greatest Common Divisor of 𝑎(𝑥) and 𝑏(𝑥) is 
𝑑(𝑥) = 𝑝7(𝑥) − 18𝑝6(𝑥) − 725𝑝5(𝑥) + 11339𝑝4(𝑥) 
+110457𝑝3(𝑥)−1441422𝑝2(𝑥)−109733𝑝1(𝑥) + 1430100 
 

Test 7  
(degree 
a(x)=8, 
rank=1) 

𝑎(𝑥) = 𝑝8(𝑥) + 44𝑝7(𝑥) − 256𝑝6(𝑥) − 31068𝑝5(𝑥) 
−301332𝑝4(𝑥) + 1035020𝑝3(𝑥)+11119936𝑝2(𝑥) 
−1003996𝑝1(𝑥) − 10818349 
𝑏(𝑥) = 𝑝7(𝑥) + 26𝑝6(𝑥) − 725𝑝5(𝑥)−18044𝑝4(𝑥) 
+24185𝑝3(𝑥) + 617734𝑝2(𝑥)−23461𝑝1(𝑥) − 599716 
 
Greatest Common Divisor of 𝑎(𝑥) and 𝑏(𝑥) is 
𝑑(𝑥) = 𝑝7(𝑥) + 26𝑝6(𝑥) − 725𝑝5(𝑥) − 18044𝑝4(𝑥) 
+24185𝑝3(𝑥)+617734𝑝2(𝑥)−23461𝑝1(𝑥) − 599716 
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The results of the implementation of the QRCP, QR Householder and 
GEPP algorithms on some test problems using C++ programming are 
presented as shown in Table 3. 

Table 3  Normwise relative error (big GCD cases). 

Test 
Examples 

Method 
Before 
normalization 

After 
normalization 

Test 1 
(degree 
a(x)=6, 
rank=2) 

QRCP 1.54739 × 10−5 1.43169 × 10−7 
QR Householder 0 1.49293 × 10−7 
GEPP 0 6.93148 × 10−8 

Test 2 
(degree 
a(x)=6, 
rank=2) 

QRCP 2.44221 × 10−4 6.63630 × 10−6 
QR Householder 1.81654 × 10−8 2.67883 × 10−6 
GEPP 0 2.21294 × 10−6 

Test 3 
(degree 
a(x)=7, 
rank=2) 

QRCP 0.05187 8.93167 × 10−5 
QR Householder 4.36021 × 10−4 8.62325 × 10−5 
GEPP 0 1.50610 × 10−4 

Test 4 
(degree 
a(x)=7, 
rank=3) 

QRCP 3.85379 × 10−5 9.85492 × 10−6 
QR Householder 0 6.47758 × 10−5 
GEPP 0 7.00335 × 10−5 

Test 5 
(degree 
a(x)=7, 
rank=3) 

QRCP 1.34992 × 10−5 1.19408 × 10−6 
QR Householder 0 9.95838 × 10−7 
GEPP 0 4.83029 × 10−6 

Test 6 
(degree 
a(x)=8, 
rank=1) 

QR Householder 0 1.86584 × 10−7 

Test 7 
(degree 
a(x)=8, 
rank=1) 

QR Householder 0 1.10550 × 10−7 

*QRCP – Qr Householder with column pivoting 
*GEPP – Gauss Elimination with partial pivoting 

Table 4 : Condition number of associated coefficient matrix. 

Test examples 
Before 

normalization 
After normalization 

Test 1 1.58796e+024 2.06467e+013 
Test 2 2.41847e+025 7.46846e+013 
Test 3 1.23251e+027 1.20487e+013 
Test 4 1.05173e+027 4.28692e+013 
Test 5 2.50945e+023 9.06619e+006 
Test 6 1.83353e+084 1.96320e+066 
Test 7 6.32532e+045 2.27361e+063 

The norm-wise relative error results in Table 3, illustrated that for 
test examples 1-5, the algorithms give a good approximation to the 
respective solution with reasonably small relative error, even though 
the condition number of the respective coefficient matrix indicate that 
the computed solutions ought to be sensitive to the order of arithmetic 
and precision applied. For each of these test examples, GEPP and QR 
Householder produce a better approximate solution compared to 
QRCP which shows that partial pivoting in the GEPP and QR without 
pivoting is sufficient to give a good approximate solution. As shown 
in Table 4, for all the test examples, the condition number for each 
coefficient matrix is slightly reduced after each column is normalized 
so as to have a uniform size in the column entries, in which case the 
QRCP do gives a better approximated solution after normalization. 
Thus for QRCP equilibration of the columns by ∞-norm reduces the 
condition number and is also able to improve the solution. 

Test examples 6 and 7 consider the cases whendeg(𝑎(𝑥)) = 8, 
such that the rank of 𝑏(𝐴) equals 1 

Thus the degree of the GCD is 7, which is just one degree less 
than that of degree 𝑎(𝑥). For these polynomials, only QR 
Householder is able to give a good approximate solution. GEPP and 
QRCP fail to give a good approximation. These two examples are 
severely ill-conditioned compared to the other test examples. It can be 
seen for these two cases that normalizing each column of the 

coefficient matrix does not contribute a significant effect in reducing 
the condition number of the matrix.  Nor does it lead to a good 
approximate solution, with the exception of the QR algorithm which 
proves to remain stable. 

 
CONCLUSION AND FURTHER WORK 

The results reveal the potential of the Gauss elimination with 
partial pivoting to solving overdetermined systems of linear equations 
up to a certain degree, despite the ill-condition property of the matrix 
involved, as depicted in the varying magnitude of the entries of the 
matrix and its respective condition number. The empirical results in 
the norm-wise relative error shows that the GEPP method is as 
competitive as the QR algorithm with column pivoting. The latter 
method involves finding the inverse of a triangular matrix before the 
final solution is obtained. On the other hand, QR Householder has less 
complexity, without having to do column pivoting and computing 
matrix inverse. It is the most effective method, so far. Further work is 
to work on test examples 6 and 7 and higher degree polynomials. 
Appropriate preconditioning or preprocessing strategies has to be 
determined since the higher the degree of the polynomials, the size of 
the integer matrix entries will also increase. Consequently, the larger 
will be the disparity in the magnitude of the entries of the matrix 
involved.  
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