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Abstract 

Boundary layer flow and heat transfer on Casson fluid with dust particle over a stretching sheet is 
numerically investigated. The influences of aligned magnetic field together with Newtonian heating are 
considered in this problem. The governing equations are first transformed into ordinary differential 
equations using the appropriate similarity transformation variables. The numerical computation using 
Runge-Kutta Fehlberg (RKF45) method is employed to generate the results. Several physical 
parameters for both phases (fluid and particle) such as aligned angle, magnetic field parameter, 
Casson parameter, fluid particle interaction parameter, Prandtl number and conjugate parameter are 
investigated and analysed. The results in term of distribution velocity and temperature are presented 
graphically. The finding revealed that a rise in aligned angle and magnetic field parameter led to 
decrease the velocity profile and increase the temperature profile for both phases. 
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INTRODUCTION 

The multiphase flow is the interaction of several phase (solid, liquid 

and gas). The flow of solid-liquid is one of the simplest multiphase flow 

which is normally encountered in the flow of mud, flow of corpuscles 

in plasma and sedimentation. The two-phase flow is studied in such a 

way that the governing equations is separate accordingly. The

propulsion and combustion in rockets and transport of powder materials 

suspension in pipe are some of engineering applications of fluid flow 

with particle suspension (Datta and Mishra, 1982). Gopinath, 2008

revealed the flow in magnetohydodynamic (MHD) generator is affected 

by the aggregation of slag and seeded particle in the channel. 

The growth of particle such as ash or soot on the wall of certain 

engineering machines have led to a reforming the interest in the study 

of fluid flow embeded with particle suspension. The concentration of 

dust and a relaxation time of dust particle are the major influence of 

dust particle on gases which has pionered discussed by (Saffman, 

1962). The boundary layer theory of dusty gas past an infinite plate was 

investigated by (Chakrabarti, 1974). The hydrodyamic of dusty fluid 

flow over a stretching with heat transfer and variable fluid properties 

effect was carried out by (Vajravelu et al., 2013). In additional to the 

work of (Ramesh et al., 2015) on the convective surface of dusty fluid 

over a stretching sheet, (Isa et al., 2016) has taking challenges to study 

the stagnation point flow by considering the magnetic field effect 

towards the fluid. Meanwhile, the mixture of water and oil with metal 

particles on the natural convection flow over a heated vertical surface 

has been conducted by (Siddiqa et al., 2015). 

Recent development on the industrial applications have heightened 

the need for non-Newtonian fluid due to some restriction in properties 

of Newtonian fluid. Processing of plastic foam and food stuft, 

production of plastic sheets and extrusion of molten polymers are 

several applications of non-Newtonian fluid flow. A number of studies 

have attempted to develop the non-Newtonian fluid model with various 

of physical effect (Aurangzaib et al., 2013). One of the non-Newtonian 

fluid model that possess the interactive behaviour of solid and liquid 

phases is recognized as Casson fluid. The human blood contained 

protein, fibrinogen and globulin in an aqueous base plasma can be 

clasify as Casson fluid (Mukhopadhyay et al., 2013). A more recent 

analysis in the influence of aligned magnetic field on the boundary layer 

flow of Casson fluid and viscous fluid over a stretching sheet has been 

highlighted as in (Hakeem et al., 2016; Kalaivanan et al., 2015; Nur 

Syamilah et al., 2016). In another study, (Sandeep et al., 2015) 

examined the mixture of conducting dust particle in a nanofluids (dusty 

nanofluid) with the present of magnetic field over a permeable 

stretching/shrinking surface. 
The fluid filled with the dust particle has been one of the major 

interesting research subject due to the various applications, therefore 

this paper attempts to provide a more detailed investigation regarding 

the effects of dust particle in a Casson fluid flow over a stretching sheet. 

The aligned magnetic field with thermal boundary condition, 

Newtonian heating (NH) is also considered. The governing equations 

of two-phase model are first transformed into ordinary differential 

equations using a similarity transformation before numerical 

computation can be carried out . The influence of several physical 
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parameters on velocity as well as temperature of fluid are analysed 

through table and graph.  

PROBLEM FORMULATION 

The steady, incompressible two dimensional boundary layer flow 

of dusty Casson fluid over a stretching sheet with a stretching linear 

velocity ( ) wu x ax is considered. An aligned magnetic field with an 

acute angle 
1 is applied to the flow as illustrates in Figure 1. The 

assumptions where dust particles are in spherical shape, uniform size 

and number density are taken as constant throughout the flow is 

deliberated. 

Fig. 1  Flow configuration. 

Under the boundary layer and Boussinesq approximations, the 

momentum and energy equations for two-phase flow can be written as: 
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where ( , )u v and ( , )p pu v are the velocities components of the fluid 

and particle phase along x and y axes, respectively.  is the 

coefficient of viscosity of the fluid,  and p are the density of fluid 

and dust phase, 1 is the aligned angle, 1v / k is the relaxation time 

of particles phase, k is the Stoke’s resistance (drag force), pc and sc

are specific heat of fluid and dust particle, T and pT are the 

temperature of fluid and particle phase, T is the thermal relaxation 

time, 0B is the magnetic-field strength, 2 /B c yA p   is the non-

Newtonian (Casson) parameter and sh is heat transfer parameter. 

Here, a is the positive constant and the boundary conditions for 

the present problem are 
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The similarity transformations (8) have been introduced to the 

governing equations (1) to (6) to transform them into dimensionless 

equations, 
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where  is the stream function defined as u
y
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


and v
x


 


. 

Now, the transformed ordinary differential equations (1)-(6) can be 

expressed as 
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and boundary conditions (7) reduces to 
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where a prime denotes differentiation with respect to  .     /pN  

is the mass concentration of particle phase, 
2
0 /M B a  is the 

magnetic field parameter, 1 / va  is the fluid-particle interaction 

parameter, Pr /pc k  is the Prandtl number, / s pc c is the 

specific heat ratio of mixture and  
1/2

/sh v a   is the conjugate 

parameter for NH.  

According to (Andersson et al., 1992), the exact solution for Eq. (9) 

by considering only magnetic field is expressed as 
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where 
21m M  . Using (14), then the exact expression for 

temperature profile is 
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. The non-dimensional quantities of physical 

interest of the the skin friction coefficient fC and the local Nusselt 

number xNu are defined by 
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where 
2Re ( / )x ax v is the Reynolds number. 

NUMERICAL PROCEDURE 

The analytical solutions is difficult to obtained for the complexity 

of the present governing equations. For that, the numerical solution of 

Runge-Kutta Fehlberg (RKF45) method on Maple software is 

employed to solve the system of ordinary equations (9) - (12) with 

boundary conditions (13) in order to evaluate the flow properties and 
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heat transfer for both fluid and dust phases. The maximum finite 

boundary layer thickness 5  and 8 is computed to satisfy the 

boundary conditions asymptotically for both phases.  

RESULTS AND DISCUSSION 

The governing equations of dusty Casson fluid model comprises of 

two part which are fluid and dust phases. The flow and heat transfer of 

the present problem are analysed graphically through several physical 

parameters, namely, particle-fluid interaction parameter  , Casson 

parameter A , aligned angle 1 , magnetic field parameter M , Prandtl 

number Pr and conjugate parameter,  . The values of skin friction 

coefficeint and Nusselt number are also tabulated in Table 3. To 

determine the correctness of the present results, comparison of skin 

friction coefficient (0)f  and surface temperature (0) with existed 

work are made for some limitating cases in the absence of fluid particle 

interaction parameter and Casson parameter (see Table 1 and 2). It was 

found, the analytic solutions of (Andersson et al., 1992) and Eq. (15) as 

well as numerical solution presented in (Salleh et al., 2010) was 

consistent with the present findings. The numerical results of velocity 

( ( ), ( ))f F   and temperature profiles ( ( ), ( ))p    for fluid and 

dust phases, respectively are computed for several fixed pertinent 

parameter which are

1 / 6, 2, 1, 0.5, 1, 12.6,Pr 16.7         M A N and 0.25 

Fig. 2 and Fig. 3 show the effect of Casson parameter, ,A for the 

fluid flow with and without dust particle. It should be noted that, the 

present problem turns to the those classical problem of single phase 

flow at 0  . From Fig. 2, the decreasing pattern of fluid velocity is 

observed with increasing on values of ,A for both Casson ( 0)  and 

dusty Casson fluid ( 1)  . Also, the fluid velocity is promptly achieve 

the asymptotic behaviour when 1  compared to 0  . It is worth 

to mention that the flow of fluid tend to decelerate in the present of dust 

particles. In Fig. 3, the decreasing trend is noticable for both phases as A
increase. Physically, fluid begins to behave like a rigid body for 

bigger value of A since the plastic dynamic viscosity of the fluid ( )B

is also higher at which there are high tendency of flow to decelerate. 

Fig. 4 and Fig. 5 illustrate the effects of magnetic field, M and aligned 

angle, 1 on the velocity profile respectively. It is noticed from both 

figures that the increasing M and 1 reduces the velocity profile for 

fluid and dust phases. The increasing aligned angle enhances the 

development of magnetic field which in turns generate the Lorentz 

force that act opposite to the flow direction and slower the mobility of 

the fluid flow. One of the most significant findings to emerge from this 

study is that the aligned angle determines the position of magnetic field 

effect as 1 can be varies from 0 90   and if 1 0  reflect to the 

absence of magnetic field effect. Meanwhile, at 1 / 2  the present 

problem is identical to the transverse magnetic field flow. The velocity 

of fluid literally causes the dust phase velocity, one can observed that 

both phases decreases with increasing value of M and 1 .  

Fig. 6 and Fig. 7 demonstrate the effect of fluid-particle interaction 

parameter,  on the velocity and temperature profiles for both phases. 

The decreasing trend is observed for fluid phase and dust phase showed 

increasing trend as  increases. Theoretically, increasing in 

reduces the relaxation time of particle velocity and enhances the drag 

force (Stokes’s law). In the physical of view, for a large value of 

causes the growth of the drag force generated by dust particle that 

behaves opposite to the moving fluid. Actually, this forces continously 

decrease the velocity of fluid so that both velocities of dust and fluid 

phase become equlibrium. The dust particle is the source of absorbing 

the heat from the fluid, thus the decreasing temperature profile of fluid 

phase is expected.  

Fig. 8 and Fig. 9 captured the effects of conjugate parameter, 

and Prandtl number, Pr on temperature profile for both phases. A rise 

in  increases the heat transfer strength which led to enhance the 

capability to transfer the heat which resulted to the increases in 

temperature of fluid. Meanwhile, increasing on values of Pr decreases 

the temperature for both phases due to the fact that larger Pr imply to 

the lower thermal diffusivity and thus weaken the thermal boundary 

layer thickness. From the mathematical understanding as denoted by 

Eqs. (10) - (13), both parameters have no significant effect on flow 

properties and those parameters can also be used as the control agent in 

rate of cooling for certain devices. 

Table 3 provides the values of skin friction and Nusselt number for 

different values of magnetic parameter, aligned angle and Casson 

parameter. The increasing magnitude of skin friction coefficient and 

decreasing of Nusselt number has been perceived in increasing those 

parameters. The results presented in Table 3 is reserved for the 

reference for future study.

Fig. 2  Influence of A for velocity 

profile with and without dust 
particle. 

Fig. 3  Influence of A on velocity 

profile. 

Fig. 4  Influence of M on velocity 

profile. 
Fig. 5  Influence of 1 on velocity 

profile. 

Fig. 6  Influence of  on velocity 

profile. 

Fig. 7  Influence of  on 

temperature profile. 

Fig. 8  Influence of  on 

temperature profile 

Fig. 9  Influence of Pr on 

temperature profile. 
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Table 1  Comparision results for (0)f , when 0, ,   N A . 

M (Andersson et al., 1992) Present 

0.0 -1.0000 -1.0000 

0.2 -1.0954 -1.0954 

0.5 -1.2247 -1.2247 

1.0 -1.4142 -1.4141 

1.2 -1.4832 -1.4832 

1.5 -1.5811 -1.5811 

2.0 -1.7321 -1.7320 

Table 2  Comparision results for (0) , when 0,    M N and 

1  . 

Pr (Salleh et al., 2010) Exact Eq. (15) Present 

3 6.0258 6.0516 6.0513 

5 1.7659 1.7604 1.7604 

7 1.1351 1.1168 1.1168 

10 0.7653 0.7645 0.7645 

100        0.1612         0.14781 0.1478 

Table 3  Computation of (0)f  and 
1/2Rex xNu 

for various values of 

1,M and A . 

M 1 A (0)f 1/2
Re

x x
Nu



0.5 / 6 1 -1.75006 2.64540  

1 / 6 1 -1.76781 2.64037 

1.5 / 6 1 -1.78539 2.63541 

2 / 6 1 -1.80280 2.63050 

2 / 6 1 -1.80280 2.63050 

2 / 4 1 -1.87084 2.61145 

2 / 3 1 -1.93650 2.59325 

2 / 2 1 -2.00000 2.57582 

2 / 6 1 -1.80280 2.63050 

2 / 6 3 -2.20794 2.51980 

2 / 6 6 -2.36039 2.47975 

2 / 6 10 -2.43087 2.46151 

CONCLUSION 

The present study was investigate to determine the effect of dust 

particle suspension in a fluid. The pigmentation and accumulation of 

dust particle may obstruct the performance of the certain machine and 

the numerical analyses might help the engineers to overcome this 

problem. The velocity of fluid and dust phase is decrease with 

increasing magnetic field parameter, Casson parameter and aligned 

angle. For fluid phase, the velocity and temperature is decreased in the 

increasing of fluid particle interaction parameter. In contrary, the 

opposite trend is observed for dust phase. The influence of increasing 

the values of magnetic field parameter, aligned angle and Casson 

parameter are to increase the magnitude of skin friction and decrease 

the Nusselt number. The bigger on skin friction coefficient produces 

more drag force along the sheet and become one of the factors that 

influence the wall design of certain device.  
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