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Abstract 

The boundary layer flow of a viscoelastic micropolar fluid over a horizontal circular cylinder with 
aligned magnetohydrodynamic effect is considered. The governing boundary layer equations are 
transformed into non-dimensional form by using appropriate dimensionless variables. The non-
dimensional governing equations are then transformed into similarity equations and solved using an 
implicit finite difference scheme known as the Keller box method. Numerical results on the 
distributions of velocity and temperature of fluid are obtained for a range of values of magnetic 
parameter, M, viscoelastic parameter, K, material parameter, K1, and mixed convection parameter,

. The graphical representation of the results are presented and it shows that the investigated 

parameters are significance and affected the fluid flow. 
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INTRODUCTION 

Convection is one of the heat transfer method that can be 

categorised as natural convection, forced convection, as well as the 

combination of both known as the mixed convection. Convection is a 

very important process with practical importance in industrial, 

geology and even in our daily life. Most electrical appliances such as 

electric kettle, refrigerator and air-conditioner functioned based on 

convection process which enable the transfer of heat from one place to 

another by fluid movement.  

The fluid of interest in this study is the non-Newtonian 

viscoelastic micropolar fluid. The study of convective  boundary layer 

flow of micropolar and viscoelastic fluid over various geometrical 

shapes are well known among researchers and both type of fluids are 

equally important in various fields. Viscoelastic fluid is a fluid which 

displays the properties of being both viscous and elastic such as tooth 

paste, unset cement and waxy crude oil. On the other hand, micropolar 

fluid is a fluid with microstructure consisting of dumb-bell molecules 

or short rigid cylindrical element. Such fluid includes liquid crystals, 

animal bloods and lubricants. 

Among the pioneer of viscoelastic fluid modelling is (Rajagopal et 

al., 1984) who studied the boundary layer flow of viscoelastic fluid 

over stretching sheet which is highly relevent in polymer industry. 

The idea is then extended by (Dandapat and Gupta, 1989), who 

considers the heat transfer of that flow over a stretching sheet. Since 

then, the study of viscoelastic study over various geometrical shapes 

gained popularity among researchers due to numerous industrial 

practicality.  

The study of viscoelastic fluid over circular cylinder is significant 

in oil and gas well production as it can contribute to drag reduction 

(Xiong et al., 2010). The findings from such study is beneficial to 

reduce friction, wear, erosion, corrosion, and deposits for well 

construction, completion and production of oil and gas (Jin et al., 

2013). Among the researches on viscoelastic fluid over a circular 

cylinder is the published articles by (Anwar et al., 2008) who studied 

the mixed convection boundary layer flow of both cases of heated and 

cooled cylinders,  (Kasim et al., 2011) investigates the free convection 

boundary layer flow with the presence of heat generation while 

(Huang and Feng, 1995) considers the wall effect on the flow of 

viscoelastic fluid.  

The study of flow of micropolar fluid is also on demand due to 

various industrial and engineering applications such as thrust bearing 

technologies, solidification of liquid crystal as well as colloid and 

polymeric suspensions. Numerous studies including (Naduvinamani 

and Kadadi, 2013), (Allen and Kline, 1971), (Das et al., 2004) and 

(Rahmatabadi et al., 2010)) have demonstrated that micropolar fluid is 

notably useful as lubricants for bearing systems as it increases load 

carrying capacity and lower the coefficient of friction as opposed to 

when system is lubricated by Newtonian fluids.  

The first model of micropolar fluid is introduced by (Eringen, 

1964) and (Eringen, 1965). A more recent study by (Eringen, 2001) 

claims that the micropolar fluid model is well-matched with certain 

RESEARCH ARTICLE 

http://www.foxitsoftware.com/shopping


Aziz et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 13, No. 4 (2017) 567-571 

568 

biological fluids, magnetic fluids, liquid with anisotropic property 

such as liquid crystal, muddy fluids as well as dusty clouds. 

In recent years, there has been an increasing amount of literature 

on micropolar fluid since Eringen’s first discovery. To date, numerous 

studies have attempted to describe the blood flow model as micropolar 

fluid (refer (Ellahi et al., 2014), (Misra et al., 2014) , (Mekheimer et 

al., 2016)), thus convincing the authors the importance of micropolar 

fluid for medical sciences break through. While some researchers 

decided on practical approach, a number of authors instigated a 

numerical approach of their proposed micropolar model by solving 

the related equations and explaining the changes of flow and heat 

transfer of the fluid from the parameters involved in the equations. 

(Qasim et al., 2013), for instance, solved the heat transfer problem of 

micropolar fluid over stretching sheet using the method of Runge-

Kutta-Fehlberg fourth-fifth order while (Nazar et al., 2004), (Ishak et 

al., 2007), (Salleh et al., 2009) and (Alkasasbeh et al., 2015) 

conducted their analyses using finite difference method known as the 

Keller-box method.  

However, in this study, the non-Newtonian viscoelastic and 

micropolar fluid will not be considered individually as prior studies, 

but together as a whole. To the best of authors’ knowledge, the study 

of convective boundary layer flow and heat transfer of viscoelastic 

micropolar fluid has not yet been addressed. This study is motivated 

from the existence of certain fluids that could fit both characteristics 

as being viscoelastic as well as micropolar fluid, for example human 

and animal blood. With the existence of viscoelastic micropolar 

model, a more accurate model of these types of fluid can be used to 

explain the flow and heat transfer of such fluid and contribute to 

various fields as was mentioned above.  

This investigation will also consider the presence of magnetic 

field. Magnetic field has wide range of applications including to 

determine the mass flow rate of petroleum through pipelines. 

Although there are diverse selections of flow meters to choose from, 

the electromagnetic flow meters is preeminent as it is robust and 

provide the same measurement in laminar and turbulent flow 

(Ustinov, 2016). Hence, in this study we attempted to investigate the 

influence of multiple parameters such as viscoelastic, micro rotation 

and magnetic parameter on the boundary layer flow and heat transfer 

of viscoelastic micropolar fluid as it passes a circular cylinder. 

MATHEMATICAL FORMULATION 

Consider a horizontal circular cylinder with radius a heated with a 

costant temperature,
w

T and  immersed in a viscoelastic micropolar 

fluid. A uniform free stream  1 2 U
 is flowing upward so that 

according to (Merkin, 1977), the free stream velocity ( )eu x for the 

boundary layer equation is  ( ) sineu x U x a and the ambient 

temperature is T


as shown in the following figure. 

Fig. 1  Physical model and coordinate system for mixed convection of a 
horizontal circular cylinder. 

Under the Boussinesq and boundary-layer approximations, according 

to (Mohd Kasim et al., 2013) and (Nazar et al., 2003), the basic non-

dimensionalised Navier-Stokes equations describing the flow are 

given by:  

Continuity equation: 

0
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x y

 
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 
                                                                (1)
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Energy equation: 
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                                                                  (3) 

Micropolar equation: 
2

2
2

H H u H
j u v H

x y y y
  

      
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     
                               (4)

subject to the boundary conditions: 

,

,

0, on 0,

( ), 0, 0 as

w

e

u

y

u

y

u v T T H n y

u u x T T H y









     

    

             (5) 

where u and v are velocity components along the x and y directions 

of the cylinder surface, 
e

u is the velocity outside the boudary layer, 

is the kinematic viscosity, 
0
( 0)k  is the viscoelasticity parameter, 

and T is the fluid desity and temperature, respectively, H is the total 

spin or microrotation component,  is the electrical conductivity, 

is the thermal diffusivity of fluid and j is the microinertia density 

defined as .
a

j
U





 , on the other hand is a constant given by 

.
2

j


 
 

  
 

Then, appropriate combinations of parameters and constants of the 

equations and flow characteristics known as dimensionless variables 

are proposed to trasform Eq. (1)-(5) to dimensionless equations. As a 

result of the non-dimensionalisation process, the complexity of the 

equations and the number of parameters are reduced.  

 
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      

   

  
   

 

                      (6) 

where Re represents the Reynolds number defined by Re .
U a




Reynolds number is a dimensionless number which represents the 

ratio of bouyancy force and viscous force acting on the fluid for 

forced convection cases. The same role is played by Grashof number 

that will be introduced later, in natural convection. As the problem 

considered is mixed convection, both dimensionless numbers are 

present in our equations.  

Substituting Eq. (6) into Eq. (1)-(4), the following dimensionless 

equations are produced.  

Continuity equation: 

0
u v

x y

 
 

 
                                                                             (7) 

Momentum equation: 
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Energy equation: 
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                                                                 (9) 

Micropolar equation: 
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The boundary conditions in  Eq. (5) are transformed to 

0, 1, on 0,

( ), 0, 0, 0 as
e

u
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where Pr is the Prandtl number,  is the constant mixed convection 

parameter, K represents the dimensionless viscoelastic parameter 

while K1 is the micropolar or material parameter. The parameters are 

defined as : 

0
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In order to reduce the complexity of Eq. (7) to (10) according to the 

boundary conditions (11), the following variables are introduced. 

( , ), ( , ), ( , )xf x y x y H xG x y                                              (12)                                             

where  is the stream function defined as,                  

,u v
y x

  
  
 

                                                                        (13)  

By substituting Eq. (12) and (13) into Eq. (8) to (11), new version of 

the equations are obtained. 
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From Eq. (17), n is a constant which value lies between and including 

0 and 1. The value 0n  indicates strong interaction of microelemets 

that they are unable to rotate close to the wall surface (Guram and 

Smith, 1980)  while 1n  is used to represent turbulent boundary 

layer flow (Peddieson, 1972).  As for the case 1 2,n  which is 

chosen for this study, the value denotes weak concentration and 

disappearance of the anti-symmetric part of the stress tensor (Ahmadi, 

1976).  

At lower stagnation point of the cylinder, i.e. 0x  Eq. (14) to (17) 

will reduce to the following ordinary differential equations: 
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subject to the boundary conditions 

1
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2
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f f G f y
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        

where primes denote differentiation with respect to y. 

Using the finite difference method known as the Keller-box along 

with the Newton’s linearization technique as described by (Cebeci and 

Bradshaw, 1984), Eq. (14) – (21) were solved numerically using the 

Fortran programming.  

RESULTS AND DISCUSSION 

It is essential to highlight that if the viscoelasticity, aligned MHD 

and micropolar effects are absent (i.e K=M=K1=0), the current 

problem will be transformed to the study conducted by (Merkin, 

1977). The previous study focusses on the mixed convection of  a 

heated and cooled circular cylinder. Basically, the current study is an 

extension on Merkin’s model when fluid of interest is viscoleastic 

micropolar with existance of magnetic effect. Due to the similarity of 

both studies, for validation purpose the current and prior results are 

compared. Based on the evident resemblance of the output in Table 1 

for values of skin friction coefficient,  0''f and heat transfer, '(0)

at numerous values of  and Pr 1, authors are assured that the 

computation of the proposed model is plausible. The margin of error 

between Merkin’s and current model are too small that it can be 

ignored. The values of ''(0)f and '(0) for various values of K when 

M=0.5, K1=0.5, 
4


  and Pr=25 are shown in Table 2. A large value 

of Prandtl number is selected to fit the characteristic of being a 

viscoleastic microplar fluid which is from the non-Newtonian family. 

It can be observed from the result that as we fixed the other 

parameters, as K increases, both the values of ''(0)f and '(0)

decrease. It is also evident  that across the different K values, ''(0)f

and '(0) increases along with the value of .
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Table 1  Comparative study on  0''f and '(0).

Merkin (1977) Present 

  0''f '(0) (0)''f (0)'

-1.9 -0.09987 0.38467 -0.099929 0.384652 

-1.8 0.01950 0.40993 0.019467 0.409934 

-1.6 0.20923 0.44409 0.209196 0.444091 

-1.4 0.36982 0.46907 0.369794 0.469064 

-1.2 0.51460 0.48935 0.514586 0.489351 

-1.0 0.64886 0.50667 0.648916 0.506689 

-0.8 0.77554 0.52193 0.775596 0.521961 

-0.6 0.89627 0.53566 0.896256 0.535678 

-0.4 1.01219 0.54818 1.012254 0.548210 

-0.2 1.12410 0.55973 1.124066 0.559742 

0.0 1.23259 0.57047 1.232658 0.570492 

0.2 1.33810 0.58052 1.338181 0.580548 

0.4 1.44100 0.58999 1.439679 0.589864 

0.6 1.54158 0.59895 1.541523 0.598964 

0.8 1.64007 0.60747 1.640159 0.607493 

1.0 1.73666 0.61559 1.736780 0.615613 

1.4 1.92482 0.63079 1.922781 0.630629 

1.8 2.10711 0.64484 2.106987 0.644849 

2.2 2.28432 0.65792 2.281646 0.657725 

3.0 2.62587 0.68173 2.622574 0.681504 

5.0 3.42296 0.73151 3.422668 0.731512 

8.0 4.51480 0.79017 4.506890 0.789785 

10.0 5.19484 0.82264 5.195332 0.822686 

Table 2  Value of shear stress coefficient at fixed values of 0.5,M 

1
0.5,K 

4


  and Pr 25.



K=0.1 K=0.5 K=2

''(0)f '(0) ''(0)f '(0) ''(0)f '(0)

-1.0 
0.832912 1.674174 0.670632 1.569531 0.433940   1.381811 

-0.5 
0.934258 1.714407 0.762295  1.609658 0.510568 1.422824 

0.0 
1.031369 1.751278 0.848993 1.645828 0.581041 1.458493 

0.1 
1.050345 1.758306 0.865820 1.652663 0.594530 1.465118 

0.6 
1.143240 1.791929 0.947700 1.685132 0.659425 1.496152 

1.2 
1.250814 1.82936 1.041592 1.720861 0.732509  1.529575 

1.5 
1.303193   1.847052 1.086983 1.737604 0.767401 1.545011 

Fig. 2  Heat transfer for various values of K. 

Fig. 3  Skin friction coefficient for various values of K. 

Fig. 4  Temperature distribution of fluid for various values of K. 

Fig. 5  Velocity distribution of fluid for various values of K. 

Fig. 2 and 3 shows the variation of the heat transfer and skin 

friction coefficient distribution with fixed values of M=0.5, K1=0.5, 

0.5, 
4


  and Pr=25. From the figures, it is apparent that as the 

viscoleastic parameter grows, the heat transfer and skin friction 

coefficient decrease. The result turns out as expected since viscoscity 

is one of the factors that affect the rate of heat transfer in convection 

as convection currents move faster within fluids with low viscosity 

than fluids which are highly viscous. It can be observed from the 

figures that it takes longer for the boundary layer to separate from the 

cylinder as the value of the viscoelastic parameter, K gets larger. 

Boundary layer separation is a phenomena that occurs when the 

boundary layer peels away from a blunt solid surface after being 

opposed by adverse pressure gradient. This phenomena is undesirable 

especially in engineering applications as it  causes large pressure drag 

on the cylinder that is even larger than the drag caused by skin 

friction. It is also noticeable that both figures display peculiar jagged 
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lines at the beginning before they get smoother as the flow travels 

towards the middle sides of the cylinder. This could occur due to the 

instability of the flow as it first touches the surface of the cylinder at 

the stagnation point. However, there might also be other causes that 

authors are not aware of and hence, we welcome ideas from fellow 

researchers. 

The velocity and temperature profiles for variety of K values at 

the lower stagnation point of the cylinder against the boundary layer 

thickness, are illustrated in Fig. 4 and 5. The figures prove that fluid 

viscoelasticity does affect the fluid velocity and temperature profiles. 

When K increases, the temperature and velocity distributions, increase 

and decrease, respectively.  

CONCLUSION 

The problem of mixed convection boundary layer flow of 

viscoelastic micropolar fliud with aligned MHD effect is considered 

in this study. Holding other parameters constant, this study reveals 

that : 

• when the viscoelastic parameter, K gets larger, the heat 

transfer and skin friction coefficient become smaller.  

• the temperature and velocity distributions, increase and 

decrease, respectively as K increases.  

• the boundary layer separates from the cylinder sooner as the 

value of the viscoelastic parameter, K gets smaller. 
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